
SimBiology® 2
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
SimBiology® Reference
© COPYRIGHT 2005–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)

Contents

Function Reference
1

Modeling, Simulation, and Analysis Tools 1-2

Project Opening and Saving . 1-3

SBML Model Reading and Writing 1-4

Object Construction . 1-5

Units and Unit Prefixes . 1-6

Functions — Alphabetical List

2

Method Reference
3

Objects . 3-2

Abstract Kinetic Laws . 3-2

Compartments . 3-3

Configuration Sets . 3-4

Events . 3-4

v

Kinetic Laws . 3-5

Models . 3-6

Parameters . 3-8

Reactions . 3-9

Root . 3-10

Rules . 3-11

SimData . 3-12

Species . 3-13

Units and Unit Prefixes . 3-13

Variants . 3-13

Using Object Methods . 3-15
Constructing (Creating) Objects . 3-15
Using Object Methods . 3-15
Help for Objects, Methods, and Properties 3-16

Methods — Alphabetical List

4

Property Reference

5
Abstract Kinetic Law . 5-2

vi Contents

Compartments . 5-3

Configuration Sets . 5-4

Events . 5-5

Kinetic Laws . 5-6

Models . 5-7

Parameters . 5-8

Reactions . 5-9

Root . 5-10

Rules . 5-11

SimData . 5-12

Species . 5-13

Unit . 5-13

Unit Prefix . 5-14

Variant . 5-14

Using Object Properties . 5-16
Entering Property Values . 5-16
Retrieving Property Values . 5-16
Help for Objects, Methods, and Properties 5-17

vii

Properties — Alphabetical List

6

Index

viii Contents

1

Function Reference

Modeling, Simulation, and Analysis
Tools (p. 1-2)

Modeling, simulation, and analysis
tools

Project Opening and Saving (p. 1-3) Save and open projects in MATLAB®

SBML Model Reading and Writing
(p. 1-4)

Export and Import SBML models

Object Construction (p. 1-5) Create SimBiology® objects
Units and Unit Prefixes (p. 1-6) Perform Unit conversion and create

user-defined units

1 Function Reference

Modeling, Simulation, and Analysis Tools
sbioconsmoiety Find conserved moieties in

SimBiology model
sbiodesktop Open SimBiology modeling and

simulation GUI
sbioensembleplot Show results of ensemble run using

2-D or 3-D plots
sbioensemblerun Multiple stochastic ensemble runs of

SimBiology model
sbioensemblestats Get statistics from ensemble run

data
sbiogetmodel Get model object that generated

simulation data
sbiogetnamedstate Get state and time data from

simulation results
sbiohelp Help for SimBiology functions
sbiolasterror SimBiology last error message
sbiolastwarning SimBiology last warning message
sbioparamestim Perform parameter estimation
sbioplot Plot simulation results in one figure
sbioreset Delete all model and simulation

objects
sbioselect Search for objects with specified

constraints
sbiosimulate Simulate model object
sbiosubplot Plot simulation results in subplots
sbioupdate Update SimBiology model version

1-2

Project Opening and Saving

Project Opening and Saving
sbioaddtolibrary Add to user-defined library
sbiocopylibrary Copy library to disk
sbioloadproject Load project from file
sbioremovefromlibrary Remove abstract kinetic law, unit, or

unit prefix from library
sbiosaveproject Save all models in root object
sbiowhos Show contents of project file, library

file, or SimBiology root object

1-3

1 Function Reference

SBML Model Reading and Writing
sbmlexport Export SimBiology model to SBML

file
sbmlimport Import SBML-formatted file

1-4

Object Construction

Object Construction
sbioabstractkineticlaw Construct abstract kinetic law object
sbiomodel Construct model object
sbioroot Return SimBiology root object
sbiovariant Construct variant object

1-5

1 Function Reference

Units and Unit Prefixes
sbioconvertunits Convert unit and unit value to new

unit
sbioregisterunitprefix Create user-defined unit prefix
sbioshowunitprefixes Show unit prefixes in library
sbioshowunits Show units in library
sbiounit Create user-defined unit
sbiounitcalculator Convert value between units
sbiounitprefix Create user-defined unit prefix

1-6

2

Functions — Alphabetical
List

sbioabstractkineticlaw

Purpose Construct abstract kinetic law object

Syntax abstkineticlawObj = sbioabstractkineticlaw('Name')
abstkineticlawObj = sbioabstractkineticlaw('Name',

'Expression')
abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...)

Arguments
Name Enter a name for the abstract kinetic law.

Name must be unique in the user-defined
kinetic law library. Name is referenced by
kineticlawObj.

Expression The mathematical expression that defines the
kinetic law.

Description A SimBiology abstract kinetic law defines a reaction rate expression,
species variables, and parameter variables for a kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('Name') creates an
abstract kinetic law object, with the name Name and returns it to
abstkineticlawObj.

The abstract kinetic law provides a mechanism for applying a specific
rate law to multiple reactions. It acts as a mapping template for
the reaction rate. The abstract kinetic law defines a reaction rate
expression, which is shown in the property Expression, and the species
and parameter variables used in the expression. The species variables
are defined in the SpeciesVariables property, and the parameter
variables are defined in the ParameterVariables property of the
abstract kinetic law object.

In order to use abstkineticlawObj when constructing a kinetic law
object with the method addkineticlaw, abstkineticlawObj must be
added to the user-defined library with the sbioaddtolibrary function.
To get the abstract kinetic law objects in the user-defined library, use
the command get(sbioroot, 'UserDefinedKineticLaws').

2-2

sbioabstractkineticlaw

abstkineticlawObj = sbioabstractkineticlaw('Name','Expression')
constructs a SimBiology abstract kinetic law object, abstkineticlawObj
with the name 'Name' and with the expression 'Expression' and
returns it to abstkineticlawObj.

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...) defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

Additional abstkineticlawObj properties can be viewed with the get
command. abstkineticlawObj properties can be modified with the
set command.

Method
Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
Name Specify name of object
Notes HTML text describing SimBiology

object
ParameterVariables Parameters in abstract kinetic

law
Parent Indicate parent object
SpeciesVariables Species in abstract kinetic law

2-3

sbioabstractkineticlaw

Tag Specify label for SimBiology
object

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples 1 Create an abstract kinetic law.

abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the abstract kinetic law to the user-defined
library. You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined ex_mylaw1 (k1*s)/(k2+k1+s)

4 Use the new abstract kinetic law when defining a reaction’s kinetic
law.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A + B <-> B + C');
kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

2-4

sbioabstractkineticlaw

Note Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the
ReactionRate of the reaction.

See Also addkineticlaw, addparameter, addreaction, sbiomodel

2-5

sbioaddtolibrary

Purpose Add to user-defined library

Syntax sbioaddtolibrary (abstkineticlawObj)
sbioaddtolibrary (unitObj)
sbioaddtolibrary (unitprefixObj)

Arguments
abstkineticlawObj Specify the abstract kinetic law object.

The Name of the abstract kinetic law
must be unique in the user-defined
kinetic law library. Name is referenced by
kineticlawObj. For more information
about creating kineticlawObj, see
sbioabstractkineticlaw.

unitObj Specify the user-defined unit to add to the
library. For more information about creating
unitObj, see sbiounit.

unitprefixObj Specify the user-defined unit prefix to
add to the library. For more information
about creating unitprefixObj, see
sbiounitprefix.

Description The function sbioaddtolibrary adds abstract kinetic laws, units, and
unit prefixes to the user-defined library.

sbioaddtolibrary (abstkineticlawObj) adds the abstract kinetic law
object (abstkineticlawObj) to the user-defined library.

sbioaddtolibrary (unitObj) adds the user-defined unit (unitObj) to
the user-defined library.

sbioaddtolibrary (unitprefixObj) adds the user-defined unit prefix
(unitprefixObj) to the user-defined library.

The sbioaddtolibrary function adds any abstract kinetic law, unit,
or unit prefix to the root object’s UserDefinedLibrary property. These

2-6

sbioaddtolibrary

library components become available automatically in future MATLAB
sessions.

Use the abstract kinetic law objects in the built-in and user-defined
library to construct a kinetic law object with the method addkineticlaw.

To get a component of the built-in and user-defined libraries, use the
commands get(sbioroot, 'BuiltInLibrary') and (get(sbioroot,
'UserDefinedLibrary')).

To remove the library component from the user-defined library, use
the function sbioremovefromlibrary. You cannot remove an abstract
kinetic law object being used by a kinetic law object.

Examples This example shows how to create an abstract kinetic law and add it
to the user-defined library.

1 Create an abstract kinetic law.

abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

The function adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

2-7

sbioaddtolibrary

4 Use the new abstract kinetic law when defining a reaction’s kinetic
law.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A + B <-> B + C');
kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

Note Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the
ReactionRate of the reaction.

See Also addkineticlaw, sbioabstractkineticlaw, sbioremovefromlibrary,
sbioroot, sbiounit, sbiounitprefix

2-8

sbioconsmoiety

Purpose Find conserved moieties in SimBiology model

Syntax [G, Sp] = sbioconsmoiety(modelObj)
[G, Sp] = sbioconsmoiety(modelObj, alg)
H = sbioconsmoiety(modelObj, alg,'p')
H = sbioconsmoiety(modelObj, alg,'p', FormatArg)
[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link')

Arguments
G An m-by-n matrix, where m is the number of

conserved quantities found and n is the number
of species in the model. Each row of G specifies a
linear combination of species whose rate of change
over time is zero.

Sp Cell array of species names that labels the columns
of G. If the species are in multiple compartments,
species names are qualified with the compartment
name in the form compartmentName.speciesName.
For example, nucleus.DNA, cytoplasm.mRNA.

modelObj Model object to be evaluated for conserved moieties.
alg Specify algorithm to use during evaluation of

conserved moieties. Valid values are 'qr',
'rreduce', or 'semipos'.

H Cell array of strings containing the conserved
moieties.

p Prints the output to a cell array of strings.
FormatArg Specifies formatting for the output H. FormatArg

should either be a C-style format string, or a
positive integer specifying the maximum number of
digits of precision used.

SI Cell array containing the names of independent
species in the model.

2-9

sbioconsmoiety

SD Cell array containing the names of dependent
species in the model.

L0 Link matrix relating SI and SD. The link matrix L0
satisfies ND = L0*NR. For the 'link' functionality,
species with their BoundaryCondition or
ConstantAmount properties set to true are treated
as having stoichiometry of zero in all reactions.

NR Reduced stoichiometry matrices containing one row
for each independent species. The concatenated
matrix [NR;ND] is a row-permuted version of the
full stoichiometry matrix of modelObj.

ND Reduced stoichiometry matrices containing one
row for each dependent species. The concatenated
matrix [NR;ND] is a row-permuted version of the
full stoichiometry matrix of modelObj.

Description [G, Sp] = sbioconsmoiety(modelObj) calculates a complete set of linear
conservation relations for the species in the SimBiology model object
modelObj.

sbioconsmoiety computes conservation relations by analyzing
the structure of the model object’s stoichiometry matrix. Thus,
sbioconsmoiety does not include species that are governed by algebraic
or rate rules.

[G, Sp] = sbioconsmoiety(modelObj, alg) provides an algorithm
specification. For alg, specify 'qr' , 'rreduce' , or 'semipos'.

• When you specify 'qr', sbioconsmoiety uses an algorithm based
on QR factorization. From a numerical standpoint, this is the most
efficient and reliable approach.

• When you specify 'rreduce', sbioconsmoiety uses an algorithm
based on row reduction, which yields better numbers for smaller
models. This is the default.

2-10

sbioconsmoiety

• When you specify 'semipos', sbioconsmoiety returns conservation
relations in which all the coefficients are greater than or equal to 0,
permitting a more transparent interpretation in terms of physical
quantities.

For larger models, the QR-based method is recommended. For smaller
models, row reduction or the semipositive algorithm may be preferable.
For row reduction and QR factorization, the number of conservation
relations returned equals the row rank degeneracy of the model object’s
stoichiometry matrix. The semipositive algorithm may return a
different number of relations. Mathematically speaking, this algorithm
returns a generating set of vectors for the space of semipositive
conservation relations.

H = sbioconsmoiety(modelObj, alg,'p') returns a cell array of strings
H containing the conserved quantities in modelObj.

H = sbioconsmoiety(modelObj, alg,'p', FormatArg) specifies
formatting for the output H. FormatArg should either be a C-style
format string, or a positive integer specifying the maximum number
of digits of precision used.

[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link') uses a
QR-based algorithm to compute information relevant to the dimensional
reduction, via conservation relations, of the reaction network in
modelObj.

Examples Example 1

This example shows conserved moieties in a cycle.

1 Create a model with a cycle. For convenience use arbitrary reaction
rates, as this will not affect the result.

modelObj = sbiomodel('cycle');
modelObj.addreaction('a -> b','ReactionRate','1');
modelObj.addreaction('b -> c','ReactionRate','b');
modelObj.addreaction('c -> a','ReactionRate','2*c');

2-11

sbioconsmoiety

2 Look for conserved moieties.

[g sp] = sbioconsmoiety(modelObj)

g =

1 1 1

sp =

'a'
'b'
'c'

Example 2

Explore semipositive conservation relations in the oscillator model.

modelObj = sbmlimport('oscillator');
sbioconsmoiety(modelObj,'semipos','p')

ans =

'pol + pol_OpA + pol_OpB + pol_OpC'
'OpB + pol_OpB + pA_OpB1 + pA_OpB_pA + pA_OpB2'
'OpA + pol_OpA + pC_OpA1 + pC_OpA2 + pC_OpA_pC'
'OpC + pol_OpC + pB_OpC1 + pB_OpC2 + pB_OpC_pB'

See Also “Moiety Conservation” in the SimBiology User’s Guide documentation

SimBiology method getstoichmatrix

2-12

sbioconvertunits

Purpose Convert unit and unit value to new unit

Syntax sbioconvertunits(Obj, 'unit')

Description sbioconvertunits(Obj, 'unit') converts the current *Units property
on SimBiology object, Obj to the unit, unit. This function configures
the *Units property to unit and updates the corresponding value
property. For example, sbioconverunits on a speciesObj updates the
InitialAmount property value and the InitialAmountUnits property
value.

Obj can be an array of SimBiology objects. Obj must be a SimBiology
object that contains a unit property. The SimBiology objects that
contain a unit property are compartment, parameter, and species
objects. For example, if Obj is a species object with InitialAmount
configured to 1 and InitialAmountUnits configured to mole, after the
call to sbioconvertunits with unit specified as molecule, speciesObj
InitialAmount is 6.0221e23 and InitialAmountUnits is molecule.

Examples Convert the units of the initial amount of glucose from molecule to
mole.

1 Create the species 'glucose' and assign an initial amount of 23
molecule.

At the command prompt, type:

modelObj = sbiomodel('cell');

compObj = addcompartment(modelObj, 'C');

speciesObj = addspecies (compObj, 'glucose', 23, 'InitialAmountUnits', 'molecule')

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:

1 C glucose 23 molecule

2-13

sbioconvertunits

2 Convert the InitialAmountUnits of glucose from molecule to mole.

sbioconvertunits (speciesObj, 'mole')

3 Verify the conversion of units and InitialAmount value.

Units are converted from molecule to mole.

get (speciesObj, 'InitialAmountUnits')

ans =

mole

The InitialAmount value is changed.

get (speciesObj, 'InitialAmount')

ans =

3.8192e-023

See Also sbioshowunits

2-14

sbiocopylibrary

Purpose Copy library to disk

Syntax sbiocopylibrary ('kineticlaw',’LibraryFileName’)
sbiocopylibrary ('unit',’LibraryFileName’)

Description sbiocopylibrary copies all user-defined abstract kinetic laws to a
file. sbiocopylibrary ('kineticlaw',’LibraryFileName’) copies all
user-defined abstract kinetic laws to the file LibraryFileName.sbklib
and places the copied file in the current directory.

sbiocopylibrary ('unit',’LibraryFileName’) copies all user-defined
units and unit prefixes to the file LibraryFileName.sbulib.

To get the abstract kinetic law objects in the built-in and user-defined
libraries, use the commands get(sbioroot, 'BuiltInKineticLaws')
and get(sbioroot, 'UserDefinedKineticLaws'). To add an
abstract kinetic law to the user-defined library, use the method
sbioaddtolibrary.

To add a unit to the user-defined library, use the sbioregisterunit
function. To add a unit prefix to the user-defined library, use the
sbioregisterunitprefix function.

Examples Create an abstract kinetic law, add it to the user-defined library, and
then copy the user-defined kinetic law library to a .sbklib file.

1 Create an abstract kinetic law.

abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');

2 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the abstract kinetic law to the user-defined
library. You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

2-15

sbiocopylibrary

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

3 Copy the user-defined kinetic law library.

sbiocopylibrary ('kineticlaw','myLibFile')

4 Verify with sbiowhos.

sbiowhos -kineticlaw myLibFile

See Also sbioaddtolibrary, sbioabstractkineticlaw, sbioregisterunit,
sbioregisterunitprefix, sbioremovefromlibrary

2-16

sbiodesktop

Purpose Open SimBiology modeling and simulation GUI

Syntax sbiodesktop
sbiodesktop(modelObj)

Arguments
modelObj Model object or an array of model objects. Enter

the variable name for a top-level SimBiology
model object. If you enter an array of model
objects, the SimBiology desktop opens with
each model object in a separate model session.

Description sbiodesktop opens the SimBiology GUI, which lets you do the following:

• Build a SimBiology model using reaction pathways and enter kinetic
data for the reactions.

• Import or export SimBiology models to and from the MATLAB
workspace or from a Systems Biology Markup Language (SBML) file.

• Modify an existing SimBiology model.

• Simulate a SimBiology model.

• View results from the simulation.

• Create and/or modify user-defined units and unit prefixes.

• Create and/or modify user-defined abstract kinetic law objects.

sbiodesktop(modelObj) opens the SimBiology GUI with a top-level
SimBiology model object (modelObj). A top-level SimBiology model
object has its property Parent set to the SimBiology root object.

Examples Create a SimBiology model in the MATLAB workspace, and then open
the GUI with the model.

modelObj = sbiomodel('cell');
sbiodesktop(modelObj)

2-17

sbiodesktop

See Also sbioroot

2-18

sbioensembleplot

Purpose Show results of ensemble run using 2-D or 3-D plots

Syntax sbioensembleplot(simdataObj)
sbioensembleplot(simdataObj, Names)
sbioensembleplot(simdataObj, Names, Time)
FH = sbioensembleplot(simdataObj, Names)
FH = sbioensembleplot(simdataObj, Names, Time)

Arguments
simdataObj An object that contains simulation data. You can

generate a simdataObj object using the function
sbioensemblerun. All elements of simdataObj
must contain data for the same states in the same
model.

Names Either a string or a cell array of strings.
Names may include qualified names such
as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve
ambiguities. Specifying {} for Names plots data for
all states contained in simdataObj.

Time A numeric scalar value. If the specified Time is not
an element of the time vectors in simdataObj, then
the function resamples simdataObj as necessary
using linear interpolation.

FH Array of handles to figure windows.

Description sbioensembleplot(simdataObj) shows a 3-D shaded plot of time-varying
distribution of all logged states in the SimData array simdataObj. The
sbioensemblerun function plots an approximate distribution created by
fitting a normal distribution to the data at every time step.

sbioensembleplot(simdataObj, Names) plots the distribution for the
data specified by Names.

2-19

sbioensembleplot

sbioensembleplot(simdataObj, Names, Time) plots a 2-D histogram of
the actual data of the ensemble distribution of the states specified by
Names at the particular time point Time.

FH = sbioensembleplot(simdataObj, Names) returns an array of
handles FH, to the figure window for the 3-D distribution plot.

FH = sbioensembleplot(simdataObj, Names, Time) returns an array of
handles FH, to the figure window for the 2-D histograms.

Examples This example shows how to plot data from an ensemble run without
interpolation.

1 The project file, radiodecay.sbproj, contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');

2 Change the solver of the active configuration set to be ssa. Also,
adjust the LogDecimation property on the SolverOptions property
of the configuration set to reduce the size of the data generated.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simdataObj = sbioensemblerun(m1, 20);

4 Create a 2-D distribution plot of the species 'z' at time = 1.0.

FH1 = sbioensembleplot(simdataObj, 'z', 1.0);

5 Create a 3-D shaded plot of both species.

FH2 = sbioensembleplot(simdataObj, {'x','z'});

See Also sbioensemblerun, sbioensemblestats, sbiomodel

2-20

sbioensemblerun

Purpose Multiple stochastic ensemble runs of SimBiology model

Syntax simdataObj = sbioensemblerun(modelObj, Numruns)
simdataObj = sbioensemblerun(modelObj, Numruns,

Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, variantObj)
simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,

Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj, Interpolation)

Arguments
simdataObj An object that contains simulation data generated

by sbioensemblerun. All elements of simdataObj
must contain data for the same states in the same
model.

modelObj Model object to be simulated.
Numruns Integer scalar representing the number of

stochastic runs to make.
Interpolation String variable denoting the interpolation scheme

to be used if data should be interpolated to get a
consistent time vector. Valid values are 'linear'
(linear interpolation), 'zoh' (zero-order hold),
or 'off' (no interpolation). Default is 'off'. If
interpolation is on, the data is interpolated to
match the time vector with the smallest simulation
stop time.

2-21

sbioensemblerun

configsetObj Specify the configuration set object to use in the
ensemble simulation. For more information about
configuration sets, see Configset object.

variantObj Specify the variant object to apply to the model
during the ensemble simulation. For more
information about variant objects, see Variant
object.

Description simdataObj = sbioensemblerun(modelObj, Numruns) performs a
stochastic ensemble run of the SimBiology model object (modelObj), and
returns the results in the SimData object (simdataObj). The active
configset and the active variants are used during simulation and are
saved in the output, SimData object (simdataObj).

sbioensemblerun uses the settings in the active configset on the
model object (modelObj) to perform the repeated simulation runs. The
SolverType property of the active configset must be set to one of the
stochastic solvers: 'ssa', 'expltau', or 'impltau'. sbioensemblerun
generates an error if the SolverType property is set to any of the
deterministic (ODE) solvers.

simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation)
performs a stochastic ensemble run of a model object (modelObj), and
interpolates the results of the ensemble run onto a common time vector
using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj)
performs an ensemble run of a model object (modelObj), using the
specified configuration set (configsetObj).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
Interpolation) performs an ensemble run of a model object (modelObj),
using the specified configuration set (configsetObj), and interpolates
the results of the ensemble run onto a common time vector using the
interpolation scheme (Interpolation).

2-22

sbioensemblerun

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj)
performs an ensemble run of a model object (modelObj), using the
variant object or array of variant objects (variantObj).

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,
Interpolation) performs an ensemble run of a model object (modelObj),
using the variant object or array of variant objects (variantObj), and
interpolates the results of the ensemble run onto a common time vector
using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
variantObj) performs an ensemble run of a model object (modelObj),
using the configuration set (configsetObj), and the variant object or
array of variant objects (variantObj). If the configuration set object
(configsetObj) is empty, the active configset on the model is used for
simulation. If the variant object (variantObj) is empty, then no variant
(not even the active variants in the model) is used for the simulation.

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
variantObj, Interpolation) performs an ensemble run of a model
object (modelObj), using the configuration set (configsetObj), and the
variant object or array of variant objects (variantObj), and interpolates
the results of the ensemble run onto a common time vector using the
interpolation scheme (Interpolation).

Examples This example shows how to perform an ensemble run and generate a
2-D distribution plot.

1 The project file, radiodecay.sbproj, contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');

2 Change the solver of the active configset to be ssa. Also, adjust
the LogDecimation property on the SolverOptions property of the
configuration set.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');

2-23

sbioensemblerun

so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

Tip The LogDecimation property lets you define how often the
simulation data is recorded as output. If your model has high
concentrations or amounts of species, or a long simulation time (for
example, 600s), you can record simulation data less often to manage
the amount of data generated. Be aware that by doing so you might
miss some transitions if your model is very dynamic. Try setting
LogDecimation to 10 or more.

3 Perform an ensemble of 20 runs with linear interpolation to get
a consistent time vector.

simdata = sbioensemblerun(m1, 20, 'linear');

4 Create a 2-D distribution plot of the species 'z' at a time = 1.0.

FH = sbioensembleplot(simdata, 'z', 1.0);

See Also addconfigset, getconfigset, sbioensemblestats,
sbioensembleplot, setactiveconfigset, SimData object

2-24

sbioensemblestats

Purpose Get statistics from ensemble run data

Syntax [t,m] = sbioensemblestats(simDataObj)
[t,m,v] = sbioensemblestats(simDataObj)
[t,m,v,n] = sbioensemblestats(simDataObj)

Arguments
t Vector of doubles that holds the common time

vector after interpolation.
m Matrix of mean values from the ensemble data. The

number of rows in m is the length of the common
time vector t after interpolation and the number
of columns is equal to the number of species. The
species order corresponding to the columns of m
can be obtained from any of the SimData objects in
simDataObj using sbiogetnamedstate.

simDataObj A cell array of SimData objects, where each
SimData object holds data for a separate simulation
run. All elements of simDataObj must contain data
for the same states in the same model. When the
time vectors of the elements of simDataObj are not
identical, simDataObj is first resampled onto a
common time vector (see interpolation below).

v Matrix of variance obtained from the ensemble
data. v has the same dimensions as m.

n Cell array of strings that holds names whose mean
and variance are returned in m and v, respectively.
The number of elements in n is the same as the
number of columns of m and v. The order of names
in n corresponds to the order of columns of m and v.

2-25

sbioensemblestats

names Either a string or a cell array of strings.
names may include qualified names such
as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve
ambiguities. If you specify empty {} for names,
sbioensemblestats returns statistics on all time
courses contained in simDataObj.

interpolation String variable denoting the interpolation method
to be used if data is to be interpolated to get a
consistent time vector. See resample for a list
of interpolation methods. Default is 'off'. If
interpolation is on, the data is interpolated to
match the time vector with the smallest simulation
stop time.

Description [t,m] = sbioensemblestats(simDataObj) computes the time-dependent
ensemble mean m of the ensemble data simDataObj obtained by running
sbioensemblerun.

[t,m,v] = sbioensemblestats(simDataObj) computes the
time-dependent ensemble mean m and variance v for the ensemble run
data simDataObj.

[t,m,v,n] = sbioensemblestats(simDataObj) computes the
time-dependent ensemble mean m and variance v for the ensemble run
data simDataObj. Each column of m or v describes the ensemble mean
or variance of some state as a function of time.

Examples The project file, radiodecay.sbproj, contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

1 Load a SimBiology model m1 from a SimBiology project file.

sbioloadproject('radiodecay.sbproj','m1');

2-26

sbioensemblestats

2 Change the solver of the active configuration set to be ssa. Also,
adjust the LogDecimation property on the SolverOptions property
of the configuration set.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simDataObj = sbioensemblerun(m1, 20);

4 Get ensemble statistics for all species using the default interpolation
method.

[T,M,V] = sbioensemblestats(simDataObj);

5 Get ensemble statistics for a specific species using the default
interpolation scheme.

[T2,M2,V2] = sbioensemblestats(simDataObj, {'z'});

See Also sbioensemblerun, sbioensembleplot, sbiogetnamedstate, sbiomodel

2-27

sbioevent

Purpose Construct event object

Note sbioevent has been removed and produces an error. Use
addevent instead.

Syntax eventObj = sbioevent(TriggerValue, EventFcnsValue)
eventObj = sbioevent(...’PropertyName', PropertyValue...)

Arguments
TriggerValue Required property to specify a trigger

condition. Must be aMATLAB expression
that evaluates to a logical value.

EventFcnsValue A string or a cell array of strings, each
of which specifies an assignment of the
form 'objectname = expression',
where objectname is the name of a valid
SimBiology object.

PropertyName Property name for an event object from
“Property Summary” on page 2-29.

PropertyValue Property value. For more information
on property values, see the property
reference for each property listed in
“Property Summary” on page 2-29.

Description eventObj = sbioevent(TriggerValue, EventFcnsValue) creates a
SimBiology event object, assigns a value (TriggerValue) for the
property Trigger, assigns a value (EventFcnsValue) to the property
EventFcns, and returns the object (eventObj).

During model simulation, an event is triggered and its EventFcns are
evaluated when the Trigger transitions from false to true. In order for
an event to be used in a simulation, the event object must be added to a
SimBiology model object with the copyobj function.

2-28

sbioevent

The preferred way to work with events is to add an event to a
SimBiology model with the addevent function.

For details on how events are handled during a simulation, see
“Changing Model Component Values Using Events” in the SimBiology
User’s Guide documentation.

eventObj = sbioevent(...’PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be any
format supported by the function set (for example, name-value string
pairs, structures, and name-value cell array pairs).

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object

2-29

sbioevent

Trigger Event trigger
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Create an event object.

eventObj = sbioevent('time>= 5', 'OpC = 200');

2 Get a list of properties for the event object.

get(eventObj)

MATLAB displays a list of event properties.

Active: 1
Annotation: ''
EventFcns: {'OpC = 200'}

Name: ''
Notes: ''

Parent: [1x1 SimBiology.Model]
Tag: ''

Trigger: 'time >= 5'
Type: 'event'

UserData: []

See Also addevent, copyobj, Event object

2-30

sbiogetmodel

Purpose Get model object that generated simulation data

Syntax modelObj = sbiogetmodel(simDataObj)

Arguments
simDataObj SimData object returned by the function

sbiosimulate or by sbioensemblerun.
modelObj Model object associated with the SimData

object.

Description modelObj = sbiogetmodel(simDataObj) returns the SimBiology
model (modelObj) associated with the results from a simulation run
(simDataObj). You can use this function to find the model object
associated with the specified SimData object when you load a project
with several model objects and SimData objects.

If the SimBiology model used to generate the SimData object
(simDataObj) is not currently loaded, modelObj is empty.

Example Retrieve the model object that generated the SimData object.

1 Create a model object, simulate, and then return the results as a
SimData object.

modelObj = sbmlimport('oscillator');
simDataObj = sbiosimulate(modelObj);

2 Get the model that generated the simulation results.

modelObj2 = sbiogetmodel(simDataObj)
SimBiology Model - Oscillator

Model Components:
Models: 0
Parameters: 0
Reactions: 42

2-31

sbiogetmodel

Rules: 0
Species: 23

3 Check that the two models are the same.

modelObj == modelObj2
ans =

1

See Also sbiosimulate

2-32

sbiogetnamedstate

Purpose Get state and time data from simulation results

Note sbiogetnamedstate produces a warning and will be removed in
a future version. Use selectbyname instead.

Syntax [t,x] = sbiogetnamedstate(simDataObj)
[t,x] = sbiogetnamedstate(simDataObj,'Name')
[t,x,Name] = sbiogetnamedstate(...)

Description sbiogetnamedstate returns state and time data from simulation
results. [t,x] = sbiogetnamedstate(simDataObj) returns the time
and state data associated with the simulation results (simDataObj)
and returns to t and x respectively. simDataObj is a SimData object
returned by the sbiosimulate function.

• t is an n-by-1 vector of time samples labeling the rows of x.

• x is an n-by-m matrix, where n is the number of times the reactions
fired and m is the number of states logged during simulation. Each
column of x defines the variation in the quantity of a species over
time.

[t,x] = sbiogetnamedstate(simDataObj,'Name') returns the state data
associated with the name Name from the SimData object (smDataObj),
and returns it to x. Name can be a cell array names. If a name, Name,
does not exist, you see a warning.

[t,x,Name] = sbiogetnamedstate(...) returns the names associated
with each column of x to Name.

See Also sbiosimulate

2-33

sbiogetsensmatrix

Purpose 3-D sensitivity matrix from simulation results

Note sbiogetsensmatrix produces a warning and will be removed in
a future version. Use getsensmatrix instead.

Syntax [T,R,States,Inpfacs] = sbiogetsensmatrix(simDataObj)
[T,R,Outputs,Inpfacs] = sbiogetsensmatrix(imDataobj,

OutNames, InpFacNames)

Arguments
T Column vector of length m specifying time points for

the sensitivity data in R.
R An m-by-n-by-p array of sensitivity data with

times, outputs, and input factors labeling its first,
second, and third dimensions respectively.

Outputs Contains names of the species states that label the
second dimension of R. R(:,i,j) is the time course
for the sensitivity of state Outputs{i} to the input
factor Inpfacs{j}. When simdataObj contains
more than one element, the output arguments are
cell arrays in which each cell contains data for the
corresponding element of simdataObj.

Inpfacs Contains names of the input factors that label the
third dimension of R. R(:,i,j) is the time course
for the sensitivity of states Outputs{i} to the input
factor Inpfacs{j}.

simDataObj SimData object returned by sbiosimulate.
Contains sensitivity data when sensitivity analysis
is enabled.

2-34

sbiogetsensmatrix

OutNames Specify outputs to get sensitivity data from
simDataObj. Can be an empty array, or a single
name, or a cell array of names. When an empty
array is specified, returns the sensitivity data on
all species states contained in simDataObj.

InpFacNames Specify input factors to get sensitivity data from
simDataObj. Can be an empty array, or a single
name, or a cell array of names. When an empty
array is specified, returns the sensitivity data for
all input factors contained in simDataObj.

Description [T,R,States,Inpfacs] = sbiogetsensmatrix(simDataObj) gets time
and sensitivity data from the SimData object simDataObj generated
by simulating a SimBiology model object using sbiosimulate.
sbiogetsensmatrix can only return sensitivity data that is contained
in simDataObj.

The sensitivity data that is logged in simDataObj is set at simulation
time by the active configuration set that is used during the simulation.
Note that the sensitivity data R returned by sbiogetsensmatrix may
be normalized, as specified at simulation time.

[T,R,Outputs,Inpfacs] = sbiogetsensmatrix(imDataobj, OutNames,
InpFacNames) gets sensitivity data for the outputs specified by OutNames
and the input factors specified by InpFacNames.

See Also getsensmatrix , sbiogetnamedstate, sbiohelp, sbiosimulate

2-35

sbiohelp

Purpose Help for SimBiology functions

Syntax sbiohelp('FunctionName')
h = sbiohelp ('FunctionName')

Description sbiohelp('FunctionName') displays information for a SimBiology
function (FunctionName).

h = sbiohelp ('FunctionName') returns the help for the SimBiology
function FunctionName to h.

You can get general information on the SimBiology software by
specifying FunctionName as 'sbio'. General information about a
SimBiology object can be returned by specifying FunctionName as one
of the following:

• 'AbstractKineticLaw'

• 'KineticLaw'

• 'Model'

• 'Parameter'

• 'Reaction'

• 'Root'

• 'Rule'

• 'Species'

• 'Configset'

• 'CompileOptions'

• 'ExplicitTauSolverOptions'

• 'ImplicitTauSolverOptions'

• 'ODESolverOptions'

• 'RuntimeOptions'

• 'SSASolverOptions'

2-36

sbiohelp

Examples sbiohelp('addreaction')
sbiohelp addreaction
sbiohelp reaction
sbiohelp('sbioshowunits')

See Also MATLAB function help

2-37

sbiolasterror

Purpose SimBiology last error message

Syntax sbiolasterror
diagstruct = sbiolasterror
sbiolasterror([])
sbiolasterror(diagstruct)

Arguments
diagstruct The diagnostic structure holding Type, Message

ID, and Message for the errors.

Description sbiolasterror or diagstruct = sbiolasterror return a SimBiology
diagnostic structure array containing the last error(s) generated by the
software. The fields of the diagnostic structure are:

Type 'error'

MessageID The message ID for the error (for example,
'SimBiology:ConfigSetNameClash')

Message The error message

sbiolasterror([]) resets the SimBiology last error so that it will return
an empty array until the next SimBiology error is encountered.

sbiolasterror(diagstruct) will set the SimBiology last error(s) to those
specified in the diagnostic structure (diagstruct).

Examples This example shows how to use verify and sbiolasterror.

1 Import a model.

a = sbmlimport('radiodecay.xml')

SimBiology Model - RadioactiveDecay

Model Components:
Models: 0

2-38

sbiolasterror

Parameters: 1
Reactions: 1
Rules: 0
Species: 2

2 Change the ReactionRate of a reaction to make the model invalid.

a.reactions(1).reactionrate = 'x*y'

SimBiology Model - RadioactiveDecay

Model Components:
Models: 0
Parameters: 1
Reactions: 1
Rules: 0
Species: 2

3 Use the function verify to validate the model.

a.verify

??? Error using ==> simbio\private\odebuilder>buildPatternSubStrings

The object y does not resolve on reaction with expression 'x*y'.

Error in ==> sbiogate at 22

feval(varargin{:});

??? --> Error reported from Expression Validation :

The object 'y' in reaction 'Reaction1' does not resolve to any in-scope species

or parameters.

--> Error reported from Dimensional Analysis :

Could not resolve species, parameter or model object 'y' during dimensional analy

--> Error reported from ODE Compilation:

Error using ==> simbio\private\odebuilder>buildPatternSubStrings

The object y does not resolve on reaction with expression 'x*y'.

2-39

sbiolasterror

4 Retrieve the error diagnostic struct.

p = sbiolasterror

p =

1x3 struct array with fields:
Type
MessageID
Message

5 Display the first error ID and Message.

p(1)

ans =

Type: 'Error'
MessageID: 'SimBiology:ReactionObjectDoesNotResolve'

Message: 'The object 'y' in reaction 'Reaction1' does not
resolve to any in-scope species or parameters.'

6 Reset the sbiolasterror.

sbiolasterror([])

ans =

[]

7 Set sbiolasterror to the diagnostic struct.

sbiolasterror(p)

ans =

2-40

sbiolasterror

1x3 struct array with fields:
Type
MessageID
Message

See Also sbiolastwarning, verify

2-41

sbiolastwarning

Purpose SimBiology last warning message

Syntax sbiolastwarning
diagstruct = sbiolastwarning
sbiolastwarning([])
sbiolastwarning(diagstruct)

Arguments
diagstruct The diagnostic structure holding Type, Message

ID, and Message for the warnings.

Description sbiolastwarning or diagstruct = sbiolastwarning return a SimBiology
diagnostic structure array containing the last warnings generated by
the software. The fields of the diagnostic structure are:

Type 'warning'

MessageID The message ID for the warning (for example,
'SimBiology:DANotPerformedReactionRate')

Message The warning message

sbiolastwarning([]) resets the SimBiology last warning so that it
will return an empty array until the next SimBiology warning is
encountered.

sbiolastwarning(diagstruct) will set the SimBiology last warnings to
those specified in the diagnostic structure (diagstruct).

See Also sbiolasterror, verify

2-42

sbioloadproject

Purpose Load project from file

Syntax sbioloadproject('projFilename')
sbioloadproject ('projFilename','variableName')
sbioloadproject projFilename variableName1 variableName2...
s = sbioloadproject (...)

Description sbioloadproject('projFilename') loads a SimBiology project
from a project file (projFilename). If no extension is specified,
sbioloadproject assumes a default extension of .sbproj.
Alternatively, the command syntax is sbioloadproject projFilename.

sbioloadproject ('projFilename','variableName') loads only the
variable variableName from the project file.

sbioloadproject projFilename variableName1 variableName2... loads
the specified variables from the project.

s = sbioloadproject (...) returns the contents of projFilename in
a variable s. s is a struct containing fields matching the variables
retrieved from the SimBiology project.

You can display the contents of the project file using the sbiowhos
command.

See Also sbioaddtolibrary, sbioremovefromlibrary, sbiosaveproject,
sbiowhos

2-43

sbiomodel

Purpose Construct model object

Syntax modelObj = sbiomodel(’NameValue')
modelObj = sbiomodel(...’PropertyName', PropertyValue...)

Arguments
NameValue Required property to specify a unique name for

a model object. Enter a character string.
PropertyName Property name for a Model object from

“Property Summary” on page 2-46.
PropertyValue Property value. Valid value for the specified

property.

Description modelObj = sbiomodel(’NameValue') creates a model object and
returns the model object (modelObj). In the model object, this method
assigns a value (NameValue) to the property Name.

modelObj = sbiomodel(...’PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

Simulate modelObj with the function sbiosimulate.

Add objects to a model object using the methods addkineticlaw,
addmodel, addparameter, addreaction, addrule, and addspecies.

All SimBiology model objects can be retrieved from the SimBiology
root object. A SimBiology model object has its Parent property set to
the SimBiology root object.

Method
Summary

addcompartment (model,
compartment)

Create compartment object

addconfigset (model) Create configuration set object
and add to model object

2-44

sbiomodel

addevent (model) Add event object to model object
addparameter (model, kineticlaw) Create parameter object and add

to model or kinetic law object
addreaction (model) Create reaction object and add to

model object
addrule (model) Create rule object and add to

model object
addvariant (model) Add variant to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getadjacencymatrix (model) Get adjacency matrix from model

object
getconfigset (model) Get configuration set object from

model object
getstoichmatrix (model) Get stoichiometry matrix from

model object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from

model
removevariant (model) Remove variant from model
reorder (model, compartment) Reorder component lists
set (any object) Set object properties

2-45

sbiomodel

setactiveconfigset (model) Set active configuration set for
model object

verify (model, variant) Validate and verify SimBiology
model

Property
Summary

Annotation Store link to URL or file
Compartments Array of compartments in model

or compartment
Events Contain all event objects
Models Contain all model objects
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects
Parent Indicate parent object
Reactions Array of reaction objects
Rules Array of rules in model object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Create a SimBiology model object.

modelObj = sbiomodel('cell', 'Tag', 'mymodel');

2 List all modelObj properties and the current values.

2-46

sbiomodel

get(modelObj)

MATLAB returns:

Annotation: ''
Models: [0x1 double]

Name: 'cell'
Notes: ''

Parameters: [0x1 double]
Parent: [1x1 SimBiology.Root]

Species: [0x1 double]
Reactions: [0x1 double]

Rules: [0x1 double]
Tag: 'mymodel'

Type: 'sbiomodel'
UserData: []

3 Display a summary of modelObj contents.

modelObj

SimBiology Model - cell

Model Components:
Models: 0
Parameters: 0
Reactions: 0
Rules: 0
Species: 0

See Also addcompartment, addconfigset, addevent, addkineticlaw, addmodel,
addparameter, addreaction, addrule, addspecies, copyobj, get,
sbioroot, sbiosimulate, set

2-47

sbioparamestim

Purpose Perform parameter estimation

Syntax [k, result]= sbioparamestim(modelObj, tspan, xtarget,
species_array, parameter_array)

[...]= sbioparamestim(..., species_array, parameter_array,
k0)

[...]= sbioparamestim(..., species_array, parameter_array,
k0, method)

Arguments
k Vector of estimated parameter values.
result struct with fields that provide information

about the progress of optimization.
tspan An n-by-1 vector representing the time span of

the target data xtarget.
xtarget An n-by-mmatrix, where n is the number of time

samples and m is the number of states you would
like to match during the simulation. States can
only be species varying with time. You cannot
use time varying (nonconstant) parameters. The
number of rows of xtarget must be the same as
the number of rows of tspan.

2-48

sbioparamestim

species_array Either an array of species objects or a cell array
of names of species in modelObj whose amounts
should be matched during the estimation
process. The length of the species_array
must be the same as the number of columns in
xtarget. If there are species with duplicate
names in different compartments, either use
qualified names to identify the species correctly
or use an array of species objects to identify the
species correctly. sbioparamestim assumes that
the order of the species in species_array is
the same as the order used to specify columns
of xtarget. For example, a qualified name for
a species named sp1 that is in a compartment
named comp2 is comp2.sp1.

parameter_array Either an array of parameter objects or a cell
array of names of parameters in modelObj whose
values should be estimated. If you do not specify
parameter_array, sbioparamestim estimates
all the parameters in the model. When a vector
of parameter initial values (k0) is not specified,
sbioparamestim takes the initial values from
modelObj. When there are parameters with
duplicate names, use either parameter objects
or qualified parameter names to identify the
right parameter object. For example, for a
parameter named param1 used in a reaction
named reaction1 and at the kinetic law level,
the qualified name is reaction1.param1.

2-49

sbioparamestim

k0 Array of doubles that holds initial values of
parameters to be estimated. The length of k0 is
same as that of parameter_array. When you
specify k0, sbioparamestim ignores any initial
values specified in active variants attached to
the model. If left unspecified, sbioparamestim
takes initial values for parameters from the
model (modelObj) or, if there are active variants,
sbioparamestim uses any initial values specified
in the active variants. See Variant object for
more information about variants.

method Either a string or a cell array. If it is a
string, it must be the name of the optimization
algorithm to be used during the estimation
process. Valid values are 'fminsearch',
'lsqcurvefit', 'lsqnonlin', 'fmincon',
'patternsearch', 'patternsearch_hybrid',
'ga', or 'ga_hybrid'.

If it is a cell array, it must have two elements:
the first one is the name of the optimization
method as described before and the second
element is a MATLAB struct as returned by
optimset, gaoptimset, or psoptimset.

sbioparamestim uses the cell array option to
specify user-defined optimization options. If you
do not specify this argument, then it defaults to
'lsqcurvefit' if the Optimization Toolbox™ is
available; otherwise it defaults to 'fminsearch'.

'fminsearch' is a part of basic MATLAB and
does not require the Optimization Toolbox.
Note that 'fminsearch' is an unconstrained
optimization method and this could result in
negative values for parameters. In that case, use
another optimization method.

2-50

sbioparamestim

Description [k, result]= sbioparamestim(modelObj, tspan, xtarget,
species_array, parameter_array) estimates parameters of the
SimBiology model object (modelObj), specified in parameter_array,
so as to match species given by species_array with the target state
(xtarget), whose time variation is given by the time span tspan.
modelObj must be a top-level SimBiology model. A top-level SimBiology
model object has its Parent property set to the SimBiology root object.

[...]= sbioparamestim(..., species_array, parameter_array, k0)
lets you specify the initial values of parameters.

[...]= sbioparamestim(..., species_array, parameter_array, k0,
method) lets you specify the optimization method to use.

Examples Example 1

Given a model and some target data, estimate all of its parameters
without having to specify any initial values. This is the simplest case.
Estimate all of its parameters using the default method.

1 Load a model from the project, gprotein_norules.sbproj. The
project contains two models, one for the wild-type strain (stored in
variable m1), and one for the mutant strain (stored in variable m2).
Load the G protein model for the wild-type strain.

sbioloadproject gprotein_norules m1;

2 Store the target data in a variable.

Gt = 10000;
tspan = [0 10 30 60 110 210 300 450 600]';
Ga_frac = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';
xtarget = Ga_frac * Gt;

3 Store all model parameters in an array.

p_array = sbioselect(m1,'Type','parameter');

4 Store the species that should match target.

2-51

sbioparamestim

Ga = sbioselect(m1,'Type','species','Name','Ga');
% In this example only one species is selected.
% To match more than one targeted species data
% replace with selected species array.

5 Estimate the parameters.

[k, result] = sbioparamestim(m1, tspan, xtarget, Ga, p_array)

k =

0.1988
0.0000
0.0045
6.2859
0.0040
0.9726
0.0000
0.1164

result =

fval: 8.7248e+005
residual: [9x1 double]
exitflag: 2

iterations: 2
funccount: 27
algorithm: 'large-scale: trust-region reflective Newton'

message: [1x77 char]

Example 2

Estimate parameters specified in p_array and species specified in
sp_array using different algorithms. This example uses the data from
“Example 1” on page 2-51.

[k1,r1] = sbioparamestim(m1, tspan, xtarget, Ga, p_array, ...
{}, 'fmincon');

[k2,r2] = sbioparamestim(m1, tspan, xtarget, Ga, p_array, ...

2-52

sbioparamestim

{}, 'patternsearch');
[k3,r3] = sbioparamestim(m1, tspan, xtarget, Ga, p_array, ...

{}, 'ga')

Example 3

Estimate parameters specified in p_array, species specified in
sp_array, and change default optimization options to use user-specified
options. This example uses the data from “Example 1” on page 2-51.

myopt1 = optimset('Display','iter');
[k1,r1] = sbioparamestim(m1, tspan, xtarget, ...

sp_array, p_array, {},{'fmincon', myopt1});

myopt2.Tolmesh = 1.0e-4;
[k2,r2] = sbioparamestim(m1, tspan, xtarget, ...

sp_array, p_array, {},{'patternsearch', myopt2});

myopt3.PopulationSize = 50;
myopt3.Generations = 20;
[k3,r3] = sbioparamestim(m1, tspan, xtarget, ...

sp_array, p_array, {},{'ga', myopt3});

Reference Tau-Mu Yi, Hiroaki Kitano, and Melvin I. Simon. PNAS (2003) vol.
100, 10764–10769.

See Also SimBiology functions sbiomodel, sbiogetnamedstate

MATLAB function optimset

Genetic Algorithm and Direct Search Toolbox™ functions gaoptimset,
psoptimset

2-53

sbioparameter

Purpose Construct parameter object

Note sbioparameter has been removed and produces an error. Use
addparameter instead.

Syntax parameterObj = sbioparameter(Obj, NameValue)
parameterObj = sbioparameter(Obj, NameValue, ValueValue)
parameterObj = sbioparameter(...’PropertyName', PropertyValue...)

Arguments
Obj Model object or kinetic law object.
NameValue Property for a parameter object. Enter a unique

character string. Since objects can use this
property to reference a parameter, a parameter
object must have a unique name at the level it
is created. For example, a kinetic law object
cannot contain two parameter objects named
kappa. However, the model object that contains
the kinetic law object can contain a parameter
object named kappa along with the kinetic law
object.

You can use the function sbioselect to find an
object with a specific Name property value.

For information on naming parameters, see
Name.

ValueValue Value of a parameter object. Enter a number.

Description parameterObj = sbioparameter(Obj, NameValue) constructs a
SimBiology parameter object, enters a value (NameValue) for the
required property Name, and returns the object (parameterObj).

To use a parameter object (paramaterObj) in a simulation, you must add
the object to a SimBiology model, or kinetic law object with the method

2-54

sbioparameter

copyobj. You can use the addparameter method to simultaneously
create and assign a parameter to a model or kinetic law object.

parameterObj = sbioparameter(Obj, NameValue, ValueValue) creates
a parameter object, assigns a value (NameValue) to the property Name,
assigns the value (ValueValue) to the property Value and returns the
parameter object to a variable (parameterObj).

parameterObj = sbioparameter(...’PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

Copy a SimBiology parameter object to a SimBiology model or kinetic
law object with the method copyobj. Remove a parameter object from a
model or kinetic law object with the method delete.

View additional parameter object properties with the get command.
Modify additional parameter object properties with the set command.
You can find help for parameterObj properties with the help
PropertyName command and help for functions with the sbiohelp
FunctionName command.

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

2-55

sbioparameter

Property
Summary

Annotation Store link to URL or file
ConstantValue Specify variable or constant

parameter value
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object
Value Assign value to parameter object
ValueUnits Parameter value units

Examples 1 Construct a parameter object.

parameterObj = sbioparameter('kappa', 1);
% View the help for the parameter object's Value property.
help(parameterObj, 'Value')

2 View parameter object properties.

get(parameterObj)

MATLAB returns:

Annotation: ''
ConstantValue: 1

Name: 'kappa'
Notes: ''

2-56

sbioparameter

Parent: [1x1 SimBiology.Reaction]
Tag: ''

Type: 'parameter'
UserData: []

Value: 4
ValueUnits: '

See Also addparameter, copyobj, sbiomodel

2-57

sbioplot

Purpose Plot simulation results in one figure

Syntax sbioplot(simDataObj)
sbioplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue)

Arguments
simDataObj SimBiology data object.
fcnHandleValue Function handle.
xArgsValue Cell array with the names of the states.
yArgsValue Cell array with the names of the states.

Description sbioplot(simDataObj) plots each simulation run for SimBiology data
object, simDataObj, in the same figure. The plot is a time plot of each
state in simDataObj. The figure also shows a hierarchical display of all
the runs in a tree, with the ability of choosing which trajectories to show.

sbioplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue) plots
each simulation run for the SimBiology data object, simDataObj, in
the same figure. The plot is created by calling the function handle,
fcnHandleValue, with input arguments simDataObj, xArgsValue, and
yArgsValue.

xArgsValue and yArgsValue should be cell arrays with the names of
the states. The function represented by the function handle should
return an array of handles and names. The signature of the function
is shown below.

function [handles, names] = functionName(simDataObj, xArgsValue, YArgsValue)

The output argument handles is a two-dimensional array of handles to
the lines plotted by the function. Each column corresponds to a run and
each row corresponds to the lines being plotted for a state. names is a
one-dimensional cell array that contains the names to be displayed on
the nodes which are children of a Run Node. The length of names should
be equal to the number of rows in the handles array returned.

2-58

sbioplot

Examples This example shows how to plot data from an ensemble run without
interpolation.

% Load the radiodecay model.
sbioloadproject('radiodecay.sbproj','m1');

% Configure the model to run with the stochastic solver.
cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
set(cs.SolverOptions, 'LogDecimation', 100);

% Run an ensemble simulation and view the results.
simDataObj = sbioensemblerun(m1, 10, 'linear');
sbioplot(simDataObj);

See Also sbiosubplot

2-59

sbioreaction

Purpose Construct reaction object

Note sbioreaction has been removed and produces an error. Use
addreaction instead.

Syntax reactionObj = sbioreaction('ReactionValue')
reactionObj = sbioreaction('ReactantsValue',

'ProductsValue')
reactionObj = sbioreaction('ReactantsValue',

RStoichCofficients, ’ProductsValue', PStoichCofficients)
reactionObj = sbioreaction(...'PropertyName', PropertyValue...)

Arguments
ReactionValue Specify the reaction equation. Enter a

character string. A hyphen preceded by a
space and followed by a right angle bracket
(->) indicates reactants going forward to
products. A hyphen with left and right
angle brackets (<->) indicates a reversible
reaction. Coefficients before reactant or
product names must be followed by a space.
Examples are 'A -> B', 'A + B -> C', '2
A + B -> 2 C', 'A <-> B'.

ReactantsValue A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

ProductsValue A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

2-60

sbioreaction

RStoichCofficients Stoichiometric coefficients for reactants,
length of array equal to length of
ReactantsValue.

PStoichCofficients Stoichiometric coefficients for products,
length of array equal to length of
ProductsValue.

Description reactionObj = sbioreaction('ReactionValue') creates a SimBiology
reaction object, assigns a value (ReactionValue) to the property
Reaction, and returns the reaction object (reactionObj).

To use reactionObj in a simulation, you must add reactionObj to a
SimBiology model object using copyobj. You can use addreaction to
simultaneously create a reaction object and add it to a model object. A
SimBiology model object is constructed with the function sbiomodel.

reactionObj = sbioreaction('ReactantsValue', 'ProductsValue')
constructs a SimBiology reaction object that contains reactant species
(Reactants) and product species (Products). The stoichiometric values
are assumed to be 1. Reactants and Products can be a string defining
the species name, a cell array of strings, a species object, or an array of
species objects.

reactionObj = sbioreaction('ReactantsValue', RStoichCofficients,
’ProductsValue', PStoichCofficients) adds stoichiometric coefficients
(RStoichCofficients) for reactant species, and stoichiometric
coefficients (PStoichCofficients) for product species, to the property
Stoichiometry. The length of Reactants and RCofficients must be
equal, and the length of Products and PCofficients must be equal.

reactionObj = sbioreaction(...'PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

View additional reactionObj properties with the get command. Modify
additional reactionObj properties with the set command. You can find

2-61

sbioreaction

help for reactionObj properties with the help PropertyName command
and help for functions with the sbiohelp FunctionName command.

A reaction object that does not have a parent can contain only species
objects that do not have a parent. If a parented species object is added
to an unparented reaction object, a copy of the species object will be
made and added to the reaction as an unparented species.

When an unparented reaction object is added to a model, the method
checks the model for the required species. If the model contains the
species, the reaction object now uses the model’s species object. If the
model does not contain the species, the species object is added to the
model and the reaction object uses it.

Method
Summary

addkineticlaw (reaction) Create kinetic law object and add
to reaction object

addproduct (reaction) Add product species object to
reaction object

addreactant (reaction) Add species object as reactant to
reaction object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rmproduct (reaction) Remove species object from

reaction object products
rmreactant (reaction) Remove species object from

reaction object reactants
set (any object) Set object properties

2-62

sbioreaction

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
KineticLaw Show kinetic law used for

ReactionRate

Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction

object
Reversible Specify whether reaction is

reversible or irreversible
Stoichiometry Species coefficients in reaction
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Construct reaction objects.

reactionObj1 = sbioreaction('a + 3 b -> 2 c');
reactionObj2 = sbioreaction({'a', 'b'}, [1 3], 'c', 2);
% View the help for the reaction object's Reversible property.

2-63

sbioreaction

help(reactionObj1, 'Reversible')

2 View the property summary for reactionObj1.

get(reactionObj1)

Active: 1
Annotation: ''
KineticLaw: []

Name: ''
Notes: ''

Parameters: [0x1 double]
Parent: []

Products: [1x1 SimBiology.Species]
Reactants: [2x1 SimBiology.Species]
Reaction: 'a + 3 b -> 2 c'

ReactionRate: ''
Reversible: 0

Stoichiometry: [-1 -3 2]
Tag: ''

Type: 'reaction'
UserData: []

See Also addreaction, sbiomodel

2-64

sbioregisterunit

Purpose Create user-defined unit

Note sbioregisterunit has been removed and produces an error.
Use sbiounit followed by sbioaddtolibrary instead.

Syntax sbioregisterunit('Name', 'Composition', Multiplier)
sbioregisterunit('Name', 'Composition', Multiplier, Offset)

Description sbioregisterunit('Name', 'Composition', Multiplier)
creates a unit with the name Name, where the unit is defined
as Multiplier*Composition and records the unit in the
UserDefinedUnits vector of sbioroot and adds it to the user-defined
library.

sbioregisterunit('Name', 'Composition', Multiplier, Offset)
creates a unit with the specified offset. You can list available units
with the sbioshowunits function.

• Name is the name of the user-defined unit. Name must begin with
characters and can contain characters, underscores or numbers. Name
can be any valid MATLAB variable name.

• Composition shows the combination of base and derived units that
defines the unit Name. For example, molarity is mole/liter. Base
units are the set of units used to define all unit quantity equations.
Derived units are defined using base units or mixtures of base and
derived units.

• Multiplier is the numerical value that defines the relationship
between the unit Name and the base unit as a product of
the Multiplier and the base unit. For example, 1 mole is
6.0221e23*molecule. The Multiplier is 6.0221e23.

• Offset is the numerical value by which the unit composition
is modified from the base unit. For example, Celsius =
(5/9)*(Fahrenheit-32); Multiplier is 5/9 and Offset is 32.

2-65

sbioregisterunit

See Also sbioaddtolibrary, sbioremovefromlibrary, sbioshowunits,
sbiounit

2-66

sbioregisterunitprefix

Purpose Create user-defined unit prefix

Note sbioregisterunitprefix has been removed and produces an
error. Use sbiounitprefix followed by sbioaddtolibrary instead.

Syntax sbioregisterunitprefix('NameValue', Exponent)

Description sbioregisterunitprefix('NameValue', Exponent) creates a unit
prefix with the name NameValue and with a multiplicative factor of
10^Exponent, and adds it to the UserDefinedUnitPrefixes vector in
sbioroot and to the user-defined library. You can see the available unit
prefixes with the sbioshowunitprefixes function.

• NameValue is the name of the prefix. Valid names must begin with a
letter and can contain characters, underscores, or numbers. Built-in
prefixes are defined based on the International System of Units (SI).

• Exponent shows the value of 10^Exponent that defines the
relationship of the unit Name to the base unit. For example, for the
unit picomole, Exponent is 12.

See Also sbioaddtolibrary, sbioremovefromlibrary, sbioshowunitprefixes,
sbiounitprefix

2-67

sbioremovefromlibrary

Purpose Remove abstract kinetic law, unit, or unit prefix from library

Syntax sbioremovefromlibrary (Obj)
sbioremovefromlibrary ('Type', 'Name')

Description sbioremovefromlibrary (Obj) removes the abstract kinetic law, unit,
or unit prefix object (Obj) from the user-defined library. The removed
component will no longer be available automatically in future MATLAB
sessions.

sbioremovefromlibrary does not remove an abstract kinetic law that
is being used in a model.

You can use a built-in or user-defined abstract kinetic law when you
construct a kinetic law object with the method addkineticlaw.

sbioremovefromlibrary ('Type', 'Name') removes the object of type
'Type' with name 'Name' from the corresponding user-defined library.
Type can be 'kineticlaw', 'unit' or 'unitprefix'.

To get a component of the built-in and user-defined libraries, use the
commands get(sbioroot, 'BuiltInLibrary') and get(sbioroot,
'UserDefinedLibrary').

To create an abstract kinetic law, unit, or unit prefix, use
sbioabstractkineticlaw, sbiounit, or sbiounitprefix respectively.

To add an abstract kinetic law, unit, or unit prefix to the user-defined
library, use the function sbioaddtolibrary.

Example This example shows how to remove an abstract kinetic law from the
user-defined library.

1 Create an abstract kinetic law.

abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');

2 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

2-68

sbioremovefromlibrary

sbioaddtolibrary adds the abstract kinetic law to the user-defined
library. You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

3 Remove the abstract kinetic law.

sbioremovefromlibrary('kineticlaw', 'mylaw1');

See Also sbioaddtolibrary, sbioabstractkineticlaw, sbiounit,
sbiounitprefix

2-69

sbioreset

Purpose Delete all model and simulation objects

Syntax sbioreset

Description sbioreset deletes all SimBiology model and simulation objects at the
root level. You cannot use a SimBiology model or simulation object after
it is deleted. You should remove objects from the MATLAB workspace
with the function clear.

The SimBiology root object contains a list of SimBiology model objects,
available units, unit prefixes, and kinetic law objects. A SimBiology
model object has its Parent property set to the SimBiology root object.

To add an abstract kinetic law to the SimBiology root user-defined
library, use the sbioaddtolibrary function. To add a unit to the
SimBiology user-defined library on the root, use the sbioregisterunit
function. To add a unit prefix to the SimBiology user-defined library on
the root, use the sbioregisterunitprefix function.

Example This example shows the difference between sbioreset and clear all.

1 Import a model into the workspace.

modelObj = sbmlimport('oscillator');

Note that the workspace contains modelObj and if you query the
SimBiology root, there is one model on the root object.

rootObj = sbioroot

SimBiology Root Contains:

Models: 1
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13

2-70

sbioreset

User Unit Prefixes: 0

2 Use clear all to clear the workspace. The modelObj still exists
on the rootObj.

clear all

rootObj

SimBiology Root Contains:

Models: 1
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

3 Usesbioreset to delete the modelObj from the root.

sbioreset
rootObj

SimBiology Root Contains:

Models: 0
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

See Also sbioroot

2-71

sbioroot

Purpose Return SimBiology root object

Syntax rootObj = sbioroot

Arguments
rootObj Return sbioroot to this object.

Description rootObj = sbioroot returns the SimBiology root object to root. The
SimBiology root object contains a list of the top-level SimBiology model
objects, available units, unit prefixes, and available abstract kinetic
law objects.

The units define the set of built-in units and user-defined units. See
Unit object for more information.

The unit prefixes define the set of built-in prefixes and user-defined
prefixes. See Unit Prefix object for more information.

The abstract kinetic law objects define the built-in abstract kinetic law
objects and user-defined abstract kinetic law objects. The process of
defining a reaction requires the use of abstract kinetic law objects when
configuring a SimBiology reaction object’s KineticLaw property with
the addkineticlaw function.

To add a unit, prefix or abstract kinetic law to the root (in the
user-defined library), use the sbioaddtolibrary function. To remove,
use sbioremovefromlibrary.

The models opened in the SimBiology desktop are stored in the root
object.

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

get (any object) Get object properties

2-72

sbioroot

reset (root) Delete all model objects from root
object

set (any object) Set object properties

Property
Summary

BuiltInLibrary Library of built-in components
Models Contain all model objects
Type Display top-level SimBiology

object type
UserDefinedLibrary Library of user-defined

components

See Also addkineticlaw, sbiomodel, sbioreset

2-73

sbiorule

Purpose Construct rule object

Note sbiorule has been removed and produces an error. Use addrule
instead.

Syntax ruleObj = sbiorule('RuleValue')
ruleObj = sbiorule(RuleValue, 'RuleTypeValue')
ruleObj = sbiorule(...'PropertyName', PropertyValue...)

Arguments
RuleValue Enter a character string within quotation marks.

For example, enter the algebraic rule 'Va*Ea +
Vi*Ei - K2'.

RuleTypeValue Enter 'algebraic', 'initialassignment',
'repeatedAssignment', or 'rate'. See RuleType
for more information.

Description A SimBiology rule is a mathematical expression that modifies a species
amount, or a parameter value. A rule is a MATLAB expression that
uses species, and parameters.

ruleObj = sbiorule('RuleValue') creates a rule object, assigns a value
(RuleValue) to the property Rule, assigns the value 'algebraic' to the
property RuleType, and assigns the root object to the property Parent.

To use ruleObj in a simulation, ruleObj must be added to a model
object with the function copyobj. Note that a rule can also be added
to a SimBiology model with the addrule function. A model object is
constructed with the function sbiomodel.

ruleObj = sbiorule(RuleValue, 'RuleTypeValue') in addition to the
above, this syntax enables you to specify RuleType.

ruleObj = sbiorule(...'PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in

2-74

sbiorule

any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

View additional rule properties with the function get, and modify rule
properties with the function set. View the rules in a model (modelObj)
with get(modelObj, 'Rules').

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Rule Specify species and parameter

interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology

object

2-75

sbiorule

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples Example 1

Construct a rule object and copy it to a model object.

ruleObj = sbiorule('Enzt - Enzi - Enza)');
modelObj = sbiomodel('cell')
ruleObj_copy = copyobj(ruleObj, modelObj);

Example 2

View the help for the rule object’s RuleType property.

help(ruleObj, 'RuleType')

Example 3

List the properties for a rule.

get(ruleObj)

Active: 1
Annotation: ''

Name: ''
Notes: ''

Parent: []
Rule: 'myrule'

RuleType: 'algebraic'
Tag: ''

Type: 'rule'
UserData: []

See Also addrule, copyobj, sbiomodel

2-76

sbiosaveproject

Purpose Save all models in root object

Syntax sbiosaveproject projFilename
sbiosaveproject projFilename variableName
sbiosaveproject projFilename variableName1 variableName2 ...

Description sbiosaveproject projFilename saves all models in the
SimBiology root object to the binary SimBiology project file
named projFilename.sbproj. The project can be loaded
with sbioloadproject. sbiosaveproject returns an error if
projFilename.sbproj is not writable.

sbiosaveproject creates the binary SimBiology project file named
simbiology.sbproj. sbiosaveproject returns an error if this is not
writable.

sbiosaveproject projFilename variableName saves only variableName.
variableName can be a SimBiology model or any MATLAB variable.

sbiosaveproject projFilename variableName1 variableName2 ...
saves the specified variables in the project.

Use the functional form of sbiosaveproject when the file name or
variable names are stored in a string. For example, if the file name
is stored in the variable fileName and you want to store MATLAB
variables variableName1 and variableName2, type sbiosaveproject
(projFileName, 'variableName1', 'variableName2') at the
command line.

Examples 1 Import an SBML file and simulate (default configset object is used).

modelObj = sbmlimport ('oscillator.xml');
timeseriesObj = sbiosimulate(modelObj);

2 Save the model and the simulation results to a project.

sbiosaveproject myprojectfile modelObj timeseriesObj

2-77

sbiosaveproject

See Also sbioaddtolibrary, sbioloadproject, sbioremovefromlibrary,
sbiowhos

2-78

sbioselect

Purpose Search for objects with specified constraints

Syntax Out = sbioselect('PropertyName', PropertyValue)
Out = sbioselect('Where', 'PropertyName', 'Condition',

PropertyValue)
Out = sbioselect(Obj, 'PropertyName', PropertyValue)
Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName',

PropertyValue)
Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition',

PropertyValue)
Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',

PropertyValue1, 'Where', 'PropertyName2', 'Condition2',
PropertyValue2,...)

Out = sbioselect(Obj, 'Depth', DepthValue,...)

Arguments
Out Object or array of objects returned by the

sbioselect function. Out might contain a
mixture of object types (for example, species
and parameters), depending on the selection
you specify. If PropertyValue is a cell array,
then the function returns all objects with the
property 'PropertyName' that matches any
element of PropertyValue.

Obj SimBiology object or array of objects to search.
If an object is not specified, sbioselect
searches the root.

PropertyName Any property of the object being searched.
PropertyValue Specify PropertyValue to include in the

selection criteria.
TypeValue Type of object to include in the selection, for

example, sbiomodel, species, reaction, or
kineticlaw.

2-79

sbioselect

Condition Constraint to impose on the search. See the
table under “Description” on page 2-80 for a list
of conditions.

DepthValue Specify the depth number to search. Valid
numbers are positive integer values and inf.
If DepthValue is inf, sbioselect searches
Obj and all of its children. If DepthValue is
1, sbioselect only searches Obj and not its
children. By default, DepthValue is inf.

Description sbioselect searches for objects with specified constraints.

Out = sbioselect('PropertyName', PropertyValue) searches the
root object (including all model objects contained by the root object)
and returns the objects with the property name (PropertyName) and
property value (PropertyValue) contained by the root object.

Out = sbioselect('Where', 'PropertyName', 'Condition',
PropertyValue) searches the root object and finds objects that have
a property name (PropertyName) and value (PropertyValue) that
matches the condition (Condition).

Out = sbioselect(Obj, 'PropertyName', PropertyValue) returns the
objects with the property name (PropertyName) and property value
(PropertyValue) found in any object (Obj).

Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName',
PropertyValue) finds the objects of type (TypeValue), with the property
name (PropertyName) and property value (PropertyValue) found in any
object (Obj). TypeValue is the type of SimBiology object to be included
in the selection, for example, species, reaction, or kineticlaw.

Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition',
PropertyValue) finds objects that have a property name (PropertyName)
and value (PropertyValue) that match the condition (Condition).

If you search for a string property value without specifying a condition,
you must use the same format as get returns. For example, if get
returns the Name as 'MyObject', sbioselect will not find an object

2-80

sbioselect

with a Name property value of 'myobject'. Therefore, for this example,
you must specify:

modelObj = sbioselect ('Name', 'MyObject')

Instead, if you use a condition, you can specify:

modelObj = sbioselect ('Where', 'Name', '==i', 'myobject')

Thus, conditions let you control the specificity of your selection.

sbioselect searches for model objects on the root in both cases.

2-81

sbioselect

The conditions, with examples of property names and corresponding
examples of property values that you can use, are listed in the following
tables. This table shows you conditions for numeric properties.

Conditions
for Numeric
Properties

Example Syntax

== Search in the model object (modelObj), and
return parameter objects that have Value equal
to 0.5. sbioselect returns parameter objects
because only parameter objects have a property
called Value.

parameterObj = sbioselect (modelObj,...
'Where', 'Value', '==', 0.5)

In the case of ==, this is equivalent to omitting
the condition as shown:

parameterObj = sbioselect (modelObj,...
'Value', 0.5)

Search in the model object (modelObj),
and return parameter objects that have
ConstantValue false (nonconstant
parameters).

parameterObj = sbioselect (modelObj,...
'Where', 'ConstantValue', '==', false)

~= Search in the model object (modelObj), and
return parameter objects that do not have Value
equal to 0.5.

parameterObj = sbioselect (modelObj,...
'Where', 'Value', '~=', 0.5)

2-82

sbioselect

Conditions
for Numeric
Properties

Example Syntax

>,<,>=,<= Search in the model object (modelObj), and
return species objects that have an initial
amount (InitialAmount) greater than 50.

speciesObj = sbioselect (modelObj, ...
'Where', 'InitialAmount', '>', 50)

Search in the model object (modelObj), and
return species objects that have an initial
amount (InitialAmount) less than or equal to
50.

speciesObj = sbioselect (modelObj,...
'Where', 'InitialAmount', '<=', 50)

between Search in the model object (modelObj), and
return species objects that have an initial
amount (InitialAmount) between 200 and 300.

speciesObj = sbioselect (modelObj,...
'Where', 'InitialAmount',...
'between', [200 300])

~between Search in the model object (modelObj), and
return species objects that have an initial
amount (InitialAmount) that is not between
200 and 300.

speciesObj = sbioselect (modelObj,...
'Where', 'InitialAmount',...
'~between', [200 300])

2-83

sbioselect

The following table shows you conditions for properties whose values
are strings.

Conditions for
String Properties

Example Syntax

== Search in the model object (modelObj), and
return species objects named 'Glucose'.

speciesObj = sbioselect (modelObj,...
'Type', 'species', 'Where',...
'Name', '==', 'Glucose')

~= Search in the model object (modelObj), and
return species objects that are not named
'Glucose'.

speciesObj = sbioselect (modelObj,...
'Type', 'species', 'Where',...
'Name', '~=', 'Glucose')

==i Same as ==; in addition, this is case insensitive.
~=i Search in the model object (modelObj), and

return species objects that are not named
'Glucose', ignoring case.

speciesObj = sbioselect (modelObj,...
'Type', 'species', 'Where',...
'Name', '~=i', 'glucose')

2-84

sbioselect

Conditions for
String Properties

Example Syntax

regexp. Supports
expressions
supported by the
functions regexp
and regexpi.

Search in the model object (modelObj), and
return objects that have 'ese' or 'ase'
anywhere within the name.

Obj = sbioselect (modelObj, 'Where',...
'Name', 'regexp', '[ea]se')

Search in the root, and return objects that have
kinase anywhere within the name.

Obj = sbioselect ('Where',...
'Name', 'regexp', 'kinase')

Note that this query could result in a mixture
of object types (for example, species and
parameters).

regexpi Same as regexp; in addition, this is case
insensitive.

~regexp Search in the model object (modelObj), and
return objects that do not have kinase
anywhere within the name.

Obj = sbioselect (modelObj, 'Where',...
'Name', '~regexp', 'kinase')

~regexpi Same as ~regexp; in addition, this is case
insensitive.

2-85

sbioselect

The condition 'contains' can be used only for those properties whose
values are an array of SimBiology objects. The following table shows
you an example of using contains.

Condition Example Syntax

'contains' Search in the model object and return reaction
objects whose Reactant property contains the
specified species.

Out = sbioselect(modelObj, 'Where',...
'Reactants', 'contains',...
modelObj.Species(1))

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',
PropertyValue1, 'Where', 'PropertyName2', 'Condition2',
PropertyValue2,...) finds objects contained by Obj that matches all
the conditions specified.

You can combine any number of property name/property value pairs
and conditions in the sbioselect command.

Out = sbioselect(Obj, 'Depth', DepthValue,...) finds objects using a
model search depth of DepthValue.

Examples 1 Import a model.

modelObj = sbmlimport('oscillator');

2 Find and return an object named pA.

Obj = sbioselect(modelObj, 'Name', 'pA');

3 Find and return species objects whose Name starts with p and have A
or B as the next letter in the name.

speciesObj = sbioselect(modelObj, 'Type', 'species', 'Where',...

'Name', 'regexp', '^p[AB]');

2-86

sbioselect

4 Find a cell array. Note how cell array values must be specified inside
another cell array.

modelObj.Species(2).UserData = {'a' 'b'};

Obj = sbioselect(modelObj,'UserData',{{'a' 'b'}})

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:

1 unnamed pB 0

See Also regexp

2-87

sbioshowunitprefixes

Purpose Show unit prefixes in library

Syntax UnitPrefixObjs = sbioshowunitprefixes
[Name, Multiplier] = sbioshowunitprefixes
[Name, Multiplier, Builtin] = sbioshowunitprefixes
[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name')

Arguments
unitPrefixObjs Vector of unit prefix objects from the

BuiltInLibrary and UserDefinedLibrary
properties of the Root object.

Name Name of the built-in or user-defined unit
prefix. Built-in prefixes are defined based
on the International System of Units (SI).

Multiplier Shows the value of 10^Exponent that
defines the relationship of the unit prefix
Name to the base unit. For example, the
multiplier in picomole is 10e-12.

Builtin An array of logical values. If Builtin is true
for a unit prefix, the unit prefix is built in.
If Builtin is false for a unit prefix, the unit
prefix is user defined.

Description sbioshowunitprefixes returns information about unit prefixes in the
SimBiology library.

UnitPrefixObjs = sbioshowunitprefixes returns the unit prefixes in
the library as a vector of unit prefix objects in UnitPrefixObjs.

[Name, Multiplier] = sbioshowunitprefixes returns the multiplier for
each prefix in Name to Multiplier as a cell array of strings.

[Name, Multiplier, Builtin] = sbioshowunitprefixes returns
whether the unit prefix is built in or user defined for each unit prefix
in Name to Builtin.

2-88

sbioshowunitprefixes

[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name')
returns the name, multiplier, and built-in status for the unit prefix with
name Name. Name can be a cell array of strings.

Examples [name, multiplier] = sbioshowunitprefixes;
[name, multiplier] = sbioshowunitprefixes('nano');

See Also sbioconvertunits, sbioshowunits, sbiounitprefix

2-89

sbioshowunits

Purpose Show units in library

Syntax unitObjs = sbioshowunits
[Name, Composition] = sbioshowunits
[Name, Composition, Multiplier] = sbioshowunits
[Name, Composition, Multiplier, Offset] = sbioshowunits
[Name, Composition, Multiplier, Offset,

Builtin] = sbioshowunits
[Name, Composition, Multiplier, Offset,

Builtin] = sbioshowunits('Name')

Arguments
unitObjs Vector of unit objects from the

BuiltInLibrary and UserDefinedLibrary
properties of the Root object.

Name Name of the built-in or user-defined unit.
Composition Shows the combination of base and derived

units that defines the unit Name. For
example, molarity is mole/liter.

Multiplier The numerical value that defines the
relationship between the unit Name and
the base or derived unit as a product
of the Multiplier and the base unit or
derived unit. For example, 1 mole is
6.0221e23*molecule. The Multiplier is
6.0221e23.

Offset Numerical value by which the unit
composition is modified from the
base unit. For example, Celsius =
(5/9)*(Fahrenheit-32); Multiplier is
5/9 and Offset is 32.

Builtin An array of logical values. If Builtin is true
for a unit, the unit is built in. If Builtin is
false for a unit, the unit is user defined.

2-90

sbioshowunits

Description unitObjs = sbioshowunits returns the units in the library to unitObjs
as a vector of unit objects.

[Name, Composition] = sbioshowunits returns the composition for each
unit in Name to Composition as a cell array of strings.

[Name, Composition, Multiplier] = sbioshowunits returns the
multiplier for the unit with name Name to Multiplier.

[Name, Composition, Multiplier, Offset] = sbioshowunits returns
the offset for the unit with name Name to Offset. The unit is defined as
Multiplier*Composition+Offset.

[Name, Composition, Multiplier, Offset, Builtin] = sbioshowunits
returns whether the unit is built in or user defined for each unit in
Name to Builtin.

[Name, Composition, Multiplier, Offset, Builtin] =
sbioshowunits('Name') returns the name, composition, multiplier,
offset and built-in status for the unit with name Name. Name can be a
cell array of strings.

Examples [name, composition] = sbioshowunits;
[name, composition] = sbioshowunits('molecule');

See Also sbioconvertunits, sbioshowunitprefixes, sbiounit

2-91

sbiosimulate

Purpose Simulate model object

Syntax [t,x,names] = sbiosimulate(modelObj)
simDataObj = sbiosimulate(modelObj)
... = sbiosimulate(modelObj, configsetObj)
... = sbiosimulate(modelObj, variantObj)
... = sbiosimulate(modelObj, configsetObj, variantObj)

Arguments Output Arguments

t An n-by-1 vector of time points. Shows the simulation
time steps.

x An n-by-m data array, where n is the number of time
samples and m is the number of states logged in the
simulation. Each column of x describes the variation
in the quantity of a state over time.

names An m-by-1 cell array of names. If the species
are in multiple compartments, species names are
qualified with the compartment name in the form
compartmentName.speciesName. For example,
nucleus.DNA, cytoplasm.mRNA.

Parameter names are qualified with the reaction
name if the parameter is scoped to the reaction’s
kinetic law. For example, Transcription.k1, denotes
that the parameter k1 is scoped to the kinetic law for
the reaction Transcription.

simdataObj An object that holds time and state data as well
as metadata, such as the types and names for the
logged states or the configuration set used during
simulation. You can access time, data, and names
stored in simdataObj through simdataObj properties.
See SimData object for more information.

2-92

sbiosimulate

Input Arguments

modelObj Model object to be simulated.
configsetObj Specify the configuration set object to use in the

simulation. For more information about configuration
sets, see Configset object.

variantObj Specify the variant object to apply to the model during
the simulation. For more information about variant
objects, see Variant object.

Description [t,x,names] = sbiosimulate(modelObj) simulates a model object
(modelObj) using the active configuration set attached to the model
(modelObj) and returns the specified outputs as described in “Output
Arguments” on page 2-92.

simDataObj = sbiosimulate(modelObj) simulates the Simbiology model
object (modelObj) and returns the results to a SimData object.

... = sbiosimulate(modelObj, configsetObj) simulates a model
object (modelObj) using a configuration set (configset) that overrides
the active configuration set attached to the model (modelObj). After the
command is executed this override does not exist; the configuration set
that is defined as 'active' is reinstated. To get the configuration sets
attached to a model, use getconfigset. To attach a new or existing
configuration set to a model, use addconfigset. To set the active
configuration set of a model, use setactiveconfigset. For more
information about configuration sets, see Configset object.

... = sbiosimulate(modelObj, variantObj) simulates a model
object (modelObj), using the variant object or array of variant objects
(variantObj).

... = sbiosimulate(modelObj, configsetObj, variantObj) simulates
a model object (modelObj), using the configuration set object
configsetObj and the variant object or array of variant objects
(variantObj).

2-93

sbiosimulate

Property
Summary

Configuration set property summary

Active Indicate object in use during
simulation

CompileOptions Dimensional analysis and unit
conversion options

Name Specify name of object
Notes HTML text describing SimBiology

object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis

options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Set stop time for simulation
StopTimeType Specify type of stop time for

simulation
TimeUnits Show stop time units for

simulation
Type Display top-level SimBiology

object type

Examples The following examples show how to change solver settings.

Example 1

Create a SimBiology model from an SBML file, simulate the model
using a solver other than the default solver (default is ode15s), and
view the results.

1 Read the file for the oscillator model.

modelObj = sbmlimport('oscillator.xml');

2-94

sbiosimulate

2 Get the active configset.

configsetObj = getconfigset(modelObj, 'active');

3 Configure the SolverType to ode45 and set StopTime to 10.

set(configsetObj, 'SolverType', 'ode23s');
set(configsetObj, 'StopTime', 10);

4 Simulate the modelObj.

[t,x]= sbiosimulate(modelObj);

5 Plot the results of the simulation.

plot(t, x)

Example 2

Simulate the above example with DimensionalAnalysis off (set to
false).

1 Repeat steps 1 and 2 above, then set dimensional analysis and unit
conversion off in the configset object. DimensionalAnalysis and
UnitConversion are properties of the CompileOptions object in the
configset object.

set(configsetObj.CompileOptions, 'UnitConversion', false);

set(configsetObj.CompileOptions, 'DimensionalAnalysis', false);

2 Simulate the modelObj.

simDataObj = sbiosimulate(modelObj);

3 Plot the results of the simulation.

plot(simDataObj.Time, simDataObj.Data);
legend(simDataObj.DataNames)

See Also addconfigset, sbiomodel

2-95

sbiospecies

Purpose Construct species object

Note sbiospecies has been removed and produces an error. Use
addspecies instead.

Syntax speciesObj = sbiospecies('NameValue')
speciesObj = sbiospecies('NameValue'), InitialAmountValue)
speciesObj = sbiospecies(...'PropertyName', PropertyValue...)

Arguments
NameValue Name for a species object. Enter a character

string unique to the level of object creation.
Species objects are identified by Name within
ReactionRate and Rule property strings.
You can use the function sbioselect to find
an object with a specific Name property value.

For information on naming species, see Name.
InitialAmountValue Initial amount value for the species object.

Enter double. Positive real number, default
= 0.

Description speciesObj = sbiospecies('NameValue') constructs a
SimBiology.Species object, enters a value (NameValue) for the
property Name, and returns the object (speciesObj).

speciesObj = sbiospecies('NameValue'), InitialAmountValue) in
addition to the above, assigns an initial amount (InitialAmountValue)
for the species.

Species are entities that take part in reactions. A species object
represents these entities. There are reserved characters you cannot use
in the species object name (NameValue).

In order for a species object to be used in a simulation, you must add
the species object to a SimBiology model object using copyobj. You

2-96

sbiospecies

can use addspecies to simultaneously create a species object and add it
to a compartment object. A compartment object is constructed with the
function addcompartment.

speciesObj = sbiospecies(...'PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

View species object properties with the function get, and change
properties with the function set. You can find help for speciesObj
properties with the help PropertyName command and help for
functions with the sbiohelp FunctionName command.

A species is a chemical or entity that participates in reactions, for
example, DNA, ATP, Pi, creatine , G-Protein, or Mitogen-Activated
Protein Kinase (MAPK). Species amounts can vary or remain constant
during a simulation.

If you change the Name property of a species you must configure
all applicable elements, such as rules that use the species, any
user-specified ReactionRate, or the kinetic law object property
SpeciesVariableNames. Use the method setspecies to configure
SpeciesVariableNames.

To update species names in the SimBiology graphical user interface,
access each appropriate pane through the Project Explorer. You can
also use the Find feature to locate the names that you want to update.
The Output pane opens with the results of Find. Double-click a result
row to go to the location of the model component.

Species names are automatically updated for reactions that use the
MassAction kinetic law. See Name for more information about specifying
species names.

2-97

sbiospecies

Method
Summary

Methods for species objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

Property
Summary

Properties for species object

Annotation Store link to URL or file
BoundaryCondition Indicate species boundary

condition
ConstantAmount Specify variable or constant

species amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object

2-98

sbiospecies

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples Example 1

Create a species (H2O) and view properties for the object.

1 Create a species object named H2O and an initial amount of 1000.

speciesObj = sbiospecies('H2O', 1000);
% View the help for the species object's InitialAmount property.
help(speciesObj, 'InitialAmount')

2 View properties for the species object.

get(speciesObj)
Annotation: ''

BoundaryCondition: 0
ConstantAmount: 0
InitialAmount: 1000

InitialAmountUnits: ''
Name: 'H2O'

Notes: ''
Parent: []

Tag: ''
Type: 'species'

UserData: []

Example 2

Create two species: one is a reactant and the other is the enzyme
catalyzing the reaction.

1 Create two species objects named glucose_6_phosphate and
glucose_6_phosphate_dehydrogenase.

2-99

sbiospecies

speciesObj1 = sbiospecies ('glucose_6_phosphate');
speciesObj2 = sbiospecies ('glucose_6_phosphate_dehydrogenase');

2 Set the initial amount of glucose_6_phosphate to 100 and verify.

set(speciesObj1, 'InitialAmount', 100);
get(speciesObj1, 'InitialAmount')

MATLAB returns:

ans =

100

See Also addspecies

MATLAB functions get, set

2-100

sbiosubplot

Purpose Plot simulation results in subplots

Syntax sbiosubplot(simDataObj)
sbiosubplot(simDataObj, fcnHandleValue, xArgsValue,

yArgsValue)
sbiosubplot(simDataObj, fcnHandleValue, xArgsValue,

yArgsValue, showLegendValue)

Arguments
simDataObj SimBiology data object.
fcnHandleValue Function handle.
xArgsValue Cell array with the names of the states.
yArgsValue Cell array with the names of the states.
showLegendValue Boolean (default is false).

Description sbiosubplot(simDataObj) plots each simulation run for SimBiology data
object, simDataObj into its own subplot. The subplot is a time plot of
each state in simDataObj. A legend is included.

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue)
plots each simulation run for the SimBiology data object, simDataObj,
into its own subplot. The subplot is plotted by calling the function
handle, fcnHandleValue, with input arguments simDataObj,
xArgsValue, and yArgsValue.

sbiosubplot(simDataObj, fcnHandleValue, xArgsValue, yArgsValue,
showLegendValue) plots each simulation run for the SimBiology data
object, simDataObj, into its own subplot. The subplot is plotted by
calling the function handle, fcnHandleValue, with input arguments
simDataObj, xArgsValue, and yArgsValue. showLegendValue indicates
if a legend is shown in the plot. showLegendValue can be either true or
false. By default, showLegendValue is false.

Examples This example shows how to plot data from an ensemble run without
interpolation.

2-101

sbiosubplot

% Load the radiodecay model.
sbioloadproject('radiodecay.sbproj','m1');

% Configure the model to run with the stochastic solver.
cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
set(cs.SolverOptions, 'LogDecimation', 100);

% Run an ensemble simulation and view the results.
simDataObj = sbioensemblerun(m1, 10, 'linear');
sbiosubplot(simDataObj);

See Also sbioplot

2-102

sbiounit

Purpose Create user-defined unit

Syntax unitObject = sbiounit('NameValue')
unitObject = sbiounit('NameValue', 'CompositionValue')
unitObject = sbiounit('NameValue','CompositionValue',

MultiplierValue)
unitObject = sbiounit('NameValue',’CompositionValue’,

MultiplierValue,OffsetValue)
unitObject = sbiounit('NameValue',’CompositionValue’,

...’PropertyName’, PropertyValue...)

Arguments
NameValue Name of the user-defined unit. NameValue

must begin with characters and can contain
characters, underscores, or numbers.
NameValue can be any valid MATLAB variable
name.

CompositionValue Shows the combination of base and derived
units that defines the unit NameValue. For
example molarity is mole/liter. Base units
are the set of units used to define all unit
quantity equations. Derived units are defined
using base units or mixtures of base and
derived units.

MultiplierValue Numerical value that defines the relationship
between the user-defined unit NameValue
and the base unit as a product of the
MultiplierValue and the base unit. For
example, 1 mole is 6.0221e23*molecule. The
MultiplierValue is 6.0221e23.

OffsetValue Numerical value by which the unit composition
is modified. For example, Celsius =
(5/9)*(Fahrenheit-32); Fahrenheit is
Composition; MultiplierValue is 5/9 and
OffsetValue is 32.

2-103

sbiounit

PropertyName Name of the unit object property, for
example,'Notes'.

PropertyValue Value of the unit object property, for example,
'New unit for GPCR model'.

Description unitObject = sbiounit('NameValue') constructs a SimBiology unit
object named NameValue. Valid names must begin with a letter, and be
followed by letters, underscores, or numbers.

unitObject = sbiounit('NameValue', 'CompositionValue') allows you
to specify the name and the composition of the unit.

unitObject =
sbiounit('NameValue','CompositionValue',MultiplierValue) creates a
unit with the name NameValue where the unit is defined as
MultiplierValue*CompositionValue.

unitObject =
sbiounit('NameValue',’CompositionValue’,MultiplierValue,OffsetValue)
creates a unit with the specified offset.

unitObject =
sbiounit('NameValue',’CompositionValue’,...’PropertyName’,
PropertyValue...) defines optional properties. The property
name/property value pairs can be in any format supported
by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs).

In order to use unitObject, you must add it to the user-defined library
with the sbioaddtolibrary function. To get the unit object into the
user-defined library, use the following command:

sbioaddtolibrary(unitObject);

You can view additional unitObject properties with the get command.
You can modify additional properties with the set command. For more
information about unit object properties and methods, see Unit object.

2-104

sbiounit

Use the sbiowhos function to list the units available in the user-defined
library.

Examples This example shows you how to create a user-defined unit, add it to the
user-defined library, and query the library.

1 Create units for the rate constants of a first-order and a second-order
reaction.

unitObj1 = sbiounit('firstconstant', '1/second', 1);
unitObj2 = sbiounit('secondconstant', '1/molarity*second', 1);

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj1);
sbioaddtolibrary(unitObj2);

3 Query the user-defined library in the root object.

rootObj = sbioroot;

rootObj.UserDefinedLibrary.Units

SimBiology UserDefined Units

Index: Name: Composition: Multiplier: Offset:

1 firstconstant 1/second 1.000000 0.000000

2 secondconstant 1/molarity*second 1.000000 0.000000

Alternatively, use the sbiowhos command.

sbiowhos -userdefined -unit

SimBiology UserDefined Units

2-105

sbiounit

Index: Name: Composition: Multiplier: Offset:

1 firstconstant 1/second 1.000000 0.000000

2 secondconstant 1/molarity*second 1.000000 0.000000

See Also sbioaddtolibrary, sbioshowunits, sbiounitprefix, sbiowhos

2-106

sbiounitcalculator

Purpose Convert value between units

Syntax result = sbiounitcalculator('fromUnits', 'toUnits', Value)

Description result = sbiounitcalculator('fromUnits', 'toUnits', Value)
converts the value, Value, which is defined in the units, fromUnits, to
the value, result, which is defined in the units, toUnits.

Example result = sbiounitcalculator('mile/hour','meter/second',1)

See Also sbioshowunits

2-107

sbiounitprefix

Purpose Create user-defined unit prefix

Syntax unitprefixObject = sbiounitprefix('NameValue')
unitprefixObject = sbiounitprefix('NameValue',

'ExponentValue')
unitprefixObject = sbiounitprefix('NameValue',

...'PropertyName', PropertyValue ...)

Arguments
NameValue Name of the user-defined unit prefix. NameValue

must begin with characters and can contain
characters, underscores, or numbers. NameValue
can be any valid MATLAB variable name.

ExponentValue Shows the value of 10^Exponent that defines the
relationship of the unit Name to the base unit. For
example, for the unit picomole, Exponent is 12.

PropertyName Name of the unit prefix object property. For
example, 'Notes'.

PropertyValue Value of the unit prefix object property. For
example, ’New unitprefix for GPCR model’.

Description unitprefixObject = sbiounitprefix('NameValue') constructs a
SimBiology unit prefix object with the name NameValue. Valid names
must begin with a letter, and be followed by letters, underscores, or
numbers.

unitprefixObject = sbiounitprefix('NameValue', 'ExponentValue')
creates a unit-prefix object with a multiplicative factor of
10^'ExponentValue'.

unitprefixObject = sbiounitprefix('NameValue', ...'PropertyName',
PropertyValue ...) defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

2-108

sbiounitprefix

In order to use unitprefixObject, you must add it to the user-defined
library with the sbioaddtolibrary function. To get the unit-prefix
object into the user-defined library, use the following command:

sbioaddtolibrary(unitprefixObject);

You can view additional unitprefixObject properties with the get
command. You can modify additional properties with the set command.

Use the sbioshowunitprefixes function to list the units available
in the user-defined library.

Examples This example shows how to create a user-defined unit prefix, add it to
the user-defined library, and query the library.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);

2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);

3 Query the user-defined library in the root object.

rootObj = sbioroot;

rootObj.UserDefinedLibrary.UnitPrefixes

Unit Prefix Array

Index: Library: Name: Exponent:

1 UserDefined peta 15

Alternatively, use the sbiowhos command.

sbiowhos -userdefined -unitprefix

2-109

sbiounitprefix

SimBiology UserDefined Unit Prefixes

Index: Name: Multiplier:

1 peta 1.000000e+015

See Also sbioaddtolibrary, sbioshowunits, sbiounit, sbiowhos

2-110

sbiounregisterunit

Purpose Remove user-defined unit from root and library

Note sbiounregisterunit has been removed and produces an error.
Use sbioremovefromlibrary instead.

Syntax sbiounregisterunit('Name')

Description sbiounregisterunit('Name') removes the user-defined unit with the
name Name from the user-defined library. You cannot remove a unit
from the built-in library. If Name is a user-defined unit, then it is
removed from the UserDefinedUnits vector on the SimBiology root
object and also from the user library. Once unregistered, this unit is not
available in future MATLAB sessions. You can list the available units
and find information on whether the unit is built in or user defined
using sbiowhos or sbioshowunits.

See Also sbioremovefromlibrary, sbioshowunits, sbiounit, sbiowhos

2-111

sbiounregisterunitprefix

Purpose Remove user-defined unit prefix from root and library

Note sbiounregisterunitprefix has been removed and produces an
error. Use sbioremovefromlibrary instead.

Syntax sbiounregisterunitprefix('Name')

Description sbiounregisterunitprefix('Name') removes the user-defined unit prefix
with the name Name from the user-defined library. You cannot remove a
unit prefix from the built-in library. If Name is a user-defined unit prefix,
it is removed from the UserDefinedUnits vector on the SimBiology root
object and also from the user library. Once unregistered, this unit prefix
is not available in future MATLAB sessions. You can list the available
unit prefixes and find information on whether the unit prefix is built in
or user defined using sbiowhos or sbioshowunitprefixes.

See Also sbioremovefromlibrary, sbioroot, sbioshowunitprefixes,
sbiounitprefix, sbiowhos

2-112

sbioupdate

Purpose Update SimBiology model version

Syntax modelsObj = sbioupdate(modelObj)
simdataObj = sbioupdate(tsObj)

Arguments
modelsObj sbioupdate output. Contains an array of model

objects that includes the top-level model object
and a model object for each previously existing
submodel.

modelObj Model object with submodels to be converted into
separate model objects.

simdataObj sbioupdate output. Contains a SimData object
converted from previous time series object.

tsObj Time series object to be converted to a SimData
object. Can be a 1-by-n cell array of time series
objects.

Description modelsObj = sbioupdate(modelObj) converts a top level SimBiology
model object (modelObj) that has submodels into an array of SimBiology
model objects which do not have any submodels.

There is one model for the top model and one for each of the submodels.
Each model created, has a copy of all the parameters used by the model,
including those that belonged to the parent model. Updating deletes
any unused parameters in the parent model.

Each model created from the previously existing submodel has empty
StatesToLog, SpeciesInputFactors, ParameterInputFactors, and
SpeciesOutputs property values.

simdataObj = sbioupdate(tsObj) converts a time series object (tsObj)
obtained from simulation of a SimBiology model into a SimData object.
If tsObj is a cell array of time series objects, then simdataObj is an
array of SimData objects, having one element for each of the time series
objects in tsObj.

2-113

sbiovariant

Purpose Construct variant object

Syntax variantObj = sbiovariant('NameValue')
variantObj = sbiovariant('NameValue', 'ContentValue')
variantObj = sbiovariant(...’PropertyName', PropertyValue...)

Arguments
modelObj Specify the model object to which you want add

a variant.
variantObj Variant object to create and add to the model

object.
NameValue Name of the variant object. NameValue is

assigned to the Name property of the variant
object.

Description variantObj = sbiovariant('NameValue') creates a SimBiology variant
object (variantObj) with the name NameValue. The variant object
Parent property is assigned [] (empty).

variantObj = sbiovariant('NameValue', 'ContentValue') creates a
SimBiology variant object (variantObj) with the Content property
set to ContentValue.

To add a variant to a model use the copyobj method. A SimBiology
variant object stores alternate values for properties on a SimBiology
model. For more information on variants, see Variant object.

variantObj = sbiovariant(...’PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

View properties for a variant object with the get command, and modify
properties for a variant object with the set command.

2-114

sbiovariant

Note Remember to use the addcontent method instead of using the
set method on the Content property because the set method replaces
the data in the Content property, whereas addcontent appends the
data.

Method
Summary

addcontent (variant) Append content to variant object
commit (variant) Commit variant contents to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rmcontent (variant) Remove contents from variant

object
set (any object) Set object properties
verify (model, variant) Validate and verify SimBiology

model

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
Content Contents of variant object
Name Specify name of object
Notes HTML text describing SimBiology

object

2-115

sbiovariant

Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Create a variant object.

variantObj = sbiovariant('p1');

2 Add content to the variant object that varies the InitialAmount
property of a species named A.

addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also addvariant, copyobj, getvariant

2-116

sbiowhos

Purpose Show contents of project file, library file, or SimBiology root object

Syntax sbiowhos flag
sbiowhos ('flag')
sbiowhos flag1 flag2...
sbiowhos FileName

Description sbiowhos shows contents of the SimBiology root object. This includes
the built-in and user-defined abstract kinetic laws, units, and unit
prefixes.

sbiowhos flag shows specific information about the SimBiology root
object as defined by flag. Valid flags are described in this table.

Flag Description

-builtin Built-in abstract kinetic laws,
units, and unit prefixes

-data Data saved in file
-kineticlaw Built-in and user-defined abstract

kinetic laws
-unit Built-in and user-defined units
-unitprefix Built-in and user-defined unit

prefixes
-userdefined User-defined abstract kinetic

laws, units, and unit prefixes

You can also specify the functional form sbiowhos ('flag').

sbiowhos flag1 flag2... shows information about the SimBiology root
object as defined by flag1, flag2,... .

sbiowhos FileName shows the contents of the SimBiology project or
library defined by Name.

2-117

sbiowhos

Examples % Show contents of the SimBiology root object
sbiowhos

% Show abstract kinetic laws on the SimBiology root object
sbiowhos -kineticlaw

% Show the builtin units of the SimBiology root object.
sbiowhos -builtin -unit

% Show all contents of project file.
sbiowhos myprojectfile

% Show abstract kinetic laws from a library file.
sbiowhos -kineticlaw mylibraryfile

% Show all contents of multiple files.
sbiowhos myfile1 myfile2

See Also MATLAB function whos

2-118

sbmlexport

Purpose Export SimBiology model to SBML file

Syntax sbmlexport(modelObj)
sbmlexport(modelObj, 'FileName')

Arguments
modelObj Model object. Enter a variable name for a model object.
FileName XML file with a Systems Biology Markup Language

(SBML) format. Enter either a file name or a path and
file name supported by your operating system. If the
file name does not have the extension .xml, then .xml
is appended to end of the file name.

Description sbmlexport(modelObj) exports a SimBiology model object (modelObj)
to a file with a Systems Biology Markup Language (SBML) Level 2
Version 1 format. The default file extension is .xml and the file name
matches the model name.

sbmlexport(modelObj, 'FileName') exports a SimBiology model object
(modelObj) to an SBML file named FileName . The default file extension
is .xml.

A SimBiology model can also be written to a SimBiology project with
the sbiosaveproject function to save features not supported by SBML.

See “SBML Support” in the SimBiology Getting Started Guide for more
information.

Example Export a model (modelObj) to a file (gene_regulation.xml) in the
current working directory.

sbmlexport(modelObj,'gene_regulation.xml');

Reference Finney, A., Hucka, M., (2003), Systems Biology Markup Language
(SBML) Level 2: Structures and facilities for model definitions. Accessed
from SBML.org

2-119

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html

sbmlexport

See Also sbiomodel, sbiosaveproject, sbmlimport

2-120

sbmlimport

Purpose Import SBML-formatted file

Syntax modelObj = sbmlimport('FileName')

Arguments
FileName XML file with a Systems Biology Markup Language

(SBML) format. Enter either a file name or a path and
file name supported by your operating system.

Description modelObj = sbmlimport('FileName') imports an SBML-formatted
file with name FileName into MATLAB and creates a model object
modelObj. FileName extensions can be .sbml or .xml. The modelObj
properties can be viewed with the get command. modelObj properties
can be modified with the set command. At the command line, help
for modelObj functions can be returned with the sbiohelp command.
sbmlimport supports SBML Levels 1 and Level 2 Version 1.

See “SBML Support” in the SimBiology Getting Started Guide for more
information.

Example sbmlobj = sbmlimport('oscillator.xml');

Reference Finney, A., Hucka, M., (2003), Systems Biology Markup Language
(SBML) Level 2: Structures and facilities for model definitions. Accessed
from SBML.org.

See Also get, sbmlexport, sbiosimulate, set

2-121

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html

sbmlimport

2-122

3

Method Reference

Objects (p. 3-2) SimBiology objects
Abstract Kinetic Laws (p. 3-2) Work with abstract kinetic law

objects
Compartments (p. 3-3) Work with compartment objects
Configuration Sets (p. 3-4) Work with configuration set objects
Events (p. 3-4) Work with event objects
Kinetic Laws (p. 3-5) Create parameter objects and work

with kinetic law objects
Models (p. 3-6) Create SimBiology objects and work

with model objects
Parameters (p. 3-8) Work with parameter objects
Reactions (p. 3-9) Create kinetic law and species

objects and work with reaction
objects

Root (p. 3-10) Work with the root object
Rules (p. 3-11) Work with rule objects
SimData (p. 3-12) Methods for SimData objects
Species (p. 3-13) Methods for species objects
Units and Unit Prefixes (p. 3-13) Methods for unit and prefix objects
Variants (p. 3-13) Methods for variant objects
Using Object Methods (p. 3-15) Command-line syntax for using

methods with SimBiology objects

3 Method Reference

Objects

AbstractKineticLaw object Kinetic law information in library
Compartment object Options for compartments
Configset object Solver settings information for

model simulation
Event object Store event information
KineticLaw object Kinetic law information for reaction
Model object Model and component information
Parameter object Parameter and scope information
Reaction object Options for model reactions
Root object Hold models, unit libraries, and

abstract kinetic law libraries
Rule object Hold rule for species and parameters
SimData object Simulation data storage
Species object Options for compartment species
Unit object Hold information about user-defined

unit
UnitPrefix object Hold information about user-defined

unit prefix
Variant object Store alternate component values

Abstract Kinetic Laws

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

3-2

Compartments

Compartments

addcompartment (model,
compartment)

Create compartment object

addspecies (compartment) Create species object and add to
compartment object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment, parameter,
species)

Rename object and update
expressions

reorder (model, compartment) Reorder component lists
set (any object) Set object properties

3-3

3 Method Reference

Configuration Sets

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
set (any object) Set object properties

Events

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

3-4

Kinetic Laws

Kinetic Laws

addparameter (model, kineticlaw) Create parameter object and add to
model or kinetic law object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getparameters (kineticlaw) Get specific parameters in kinetic

law object
getspecies (kineticlaw) Get specific species in kinetic law

object
set (any object) Set object properties
setparameter (kineticlaw) Specify specific parameters in kinetic

law object
setspecies (kineticlaw) Specify species in kinetic law object

3-5

3 Method Reference

Models

addcompartment (model,
compartment)

Create compartment object

addconfigset (model) Create configuration set object and
add to model object

addevent (model) Add event object to model object
addparameter (model, kineticlaw) Create parameter object and add to

model or kinetic law object
addreaction (model) Create reaction object and add to

model object
addrule (model) Create rule object and add to model

object
addvariant (model) Add variant to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getadjacencymatrix (model) Get adjacency matrix from model

object
getconfigset (model) Get configuration set object from

model object
getstoichmatrix (model) Get stoichiometry matrix from model

object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from model
removevariant (model) Remove variant from model
reorder (model, compartment) Reorder component lists
set (any object) Set object properties

3-6

Models

setactiveconfigset (model) Set active configuration set for model
object

verify (model, variant) Validate and verify SimBiology
model

3-7

3 Method Reference

Parameters

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment, parameter,
species)

Rename object and update
expressions

set (any object) Set object properties

3-8

Reactions

Reactions

addkineticlaw (reaction) Create kinetic law object and add to
reaction object

addproduct (reaction) Add product species object to
reaction object

addreactant (reaction) Add species object as reactant to
reaction object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rmproduct (reaction) Remove species object from reaction

object products
rmreactant (reaction) Remove species object from reaction

object reactants
set (any object) Set object properties

3-9

3 Method Reference

Root

copyobj (any object) Copy SimBiology object and its
children

get (any object) Get object properties
reset (root) Delete all model objects from root

object
set (any object) Set object properties

3-10

Rules

Rules

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

3-11

3 Method Reference

SimData

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getdata (SimData) Get data from SimData object array
getsensmatrix (SimData) Get 3-D sensitivity matrix from

SimData array
resample (SimData) Resample SimData object array onto

new time vector
select (SimData) Select data from SimData object
selectbyname (SimData) Select data by name from SimData

object array

3-12

Species

Species

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment, parameter,
species)

Rename object and update
expressions

set (any object) Set object properties

Units and Unit Prefixes

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Variants

addcontent (variant) Append content to variant object
commit (variant) Commit variant contents to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object

3-13

3 Method Reference

display (any object) Display summary of SimBiology
object

get (any object) Get object properties
rmcontent (variant) Remove contents from variant object
set (any object) Set object properties
verify (model, variant) Validate and verify SimBiology

model

3-14

Using Object Methods

Using Object Methods
Command-line syntax for using methods with SimBiology objects

Constructing (Creating) Objects
(p. 3-15)
Using Object Methods (p. 3-15)
Help for Objects, Methods, and
Properties (p. 3-16)

Constructing (Creating) Objects
Create an object that is not referenced by a model using the constructor
functions sbioabstractkineticlaw, sbiomodel, sbioparameter,
sbioreaction, sbioroot, sbiorule, and sbiospecies.

ObjectName = ConstructorFunction(RequiredParameters,...
'PropertyName', PropertyValue')

To create objects referenced by a model, use the model object methods
addconfigset, addmodel, addparameter, addreaction, addrule, and
addspecies.

ObjectName = ModelName.Method(Arguments)

To create objects referenced by a reaction, use the reaction object methods
addkineticlaw, addparameter, addproduct, and addreactant.

ObjectName = ReactionName.Method(Arguments)

Note that ObjectName is not a copy of the object, but a pointer to the created
object.

Using Object Methods
Using MATLAB function notation:

MethodName(ObjectName, arguments, ...)

Using object dot notation:

3-15

3 Method Reference

ObjectName.MethodName(arguments, ...)

Help for Objects, Methods, and Properties
Display information for SimBiology object methods and properties in the
MATLAB Command Window.

help sbio Display a list of functions and
methods.

help FunctionName Display function information.
sbiohelp('MethodName') Display method information.
sbiohelp('PropertyName') Display property information.

3-16

4

Methods — Alphabetical
List

The object that the methods apply to are listed in parenthesis after the
method name.

AbstractKineticLaw object

Purpose Kinetic law information in library

Description The abstract kinetic law object represents an abstract kinetic law, which
provides a mechanism for applying a rate law to multiple reactions. The
information in this object acts as a mapping template for the reaction
rate. The abstract kinetic law defines a mathematical relationship that
defines the rate at which reactant species are produced and product
species are consumed in the reaction. The expression is shown in
the property Expression. The species variables are defined in the
SpeciesVariables property, and the parameter variables are defined
in the ParameterVariables property of the abstract kinetic law object.
For an explanation of how the abstract kinetic law object relates to the
kinetic law object, see KineticLaw object.

Define your own abstract kinetic law and add it to the abstract kinetic
law library with the sbioaddtolibrary function. You can then use
the abstract kinetic law when constructing a kinetic law object with
the method addkineticlaw. To retrieve an abstract kinetic law object
from the user-defined library, use the command get(sbioroot,
'UserDefinedKineticLaws').

See “Property Summary” on page 4-3 for links to abstract kinetic law
object property reference pages.

Properties define the characteristics of an object. For example, an
abstract kinetic law object includes properties for the expression, the
name of the law, parameter variables, and species variables. Use the
get and set commands to list object properties and change their values
at the command line. You can graphically change object properties
in the SimBiology desktop.

Constructor
Summary

sbioabstractkineticlaw Construct abstract kinetic law
object

4-2

AbstractKineticLaw object

Method
Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
Name Specify name of object
Notes HTML text describing SimBiology

object
ParameterVariables Parameters in abstract kinetic

law
Parent Indicate parent object
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also Configset object, KineticLaw object, Model object, Parameter
object, Reaction object, Root object, Rule object, Species
object

4-3

addcompartment (model, compartment)

Purpose Create compartment object

Syntax compartmentObj = addcompartment(modelObj, 'NameValue')
compartmentObj = addcompartment(owningCompObj, 'NameValue')
compartmentObj = addcompartment(modelObj, 'NameValue',

CapacityValue)
compartmentObj = addcompartment(...'PropertyName',
PropertyValue...)

Arguments
modelObj Model object.
owningCompObj Compartment object that contains the newly

created compartment object.
NameValue Name for a compartment object. Enter a

character string unique to the model object.
For information on naming compartments,
see Name.

CapacityValue Capacity value for the compartment object.
Enter double. Positive real number, default
= 1.

PropertyName Enter the name of a valid property. Valid
property names are listed in “Property
Summary” on page 4-6.

PropertyValue Enter the value for the property specified in
PropertyName. Valid property values are
listed on each property reference page.

Description compartmentObj = addcompartment(modelObj, 'NameValue') creates
a compartment object and returns the compartment object
(compartmentObj). In the compartment object, this method assigns a
value (NameValue) to the property Name, and assigns the model object
(modelObj) to the property Parent. In the model object, this method
assigns the compartment object to the property Compartments.

4-4

addcompartment (model, compartment)

compartmentObj = addcompartment(owningCompObj, 'NameValue') in
addition to the above, adds the newly created compartment within a
compartment object (owningCompObj), and assigns this compartment
object (owningCompObj) to the Owner property of the newly created
compartment object (compartmentObj). The parent model is the model
that contains the owning compartment (owningCompObj).

compartmentObj = addcompartment(modelObj, 'NameValue',
CapacityValue), in addition to the above, this method assigns capacity
(CapacityValue) for the compartment.

If you define a reaction within a model object (modelObj) that does not
contain any compartments, the process of adding a reaction generates
a default compartment object and assigns the reaction species to the
compartment. If there is more than one compartment, you must specify
which compartment the species should be assigned to using the format
CompartmentName.SpeciesName.

View properties for a compartment object with the get command, and
modify properties for a compartment object with the set command.
You can view a summary table of compartment objects in a model
(modelObj) with get(modelObj, 'Compartments') or the properties of
the first compartment with get(modelObj.Compartments(1)).

compartmentObj = addcompartment(...'PropertyName',
PropertyValue...) defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs). “Property Summary” on page 4-6 lists
the properties. The Owner property is one exception; you cannot
set the Owner property in the addcompartment syntax because,
addcompartment requires the owning model or compartment to be
specified as the first argument and uses this information to set the
Owner property. After adding a compartment, you can change the owner
using the function set.

4-5

addcompartment (model, compartment)

Method
Summary

Methods for compartment objects

addcompartment (model,
compartment)

Create compartment object

addspecies (compartment) Create species object and add to
compartment object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

reorder (model, compartment) Reorder component lists
set (any object) Set object properties

Property
Summary

Properties for compartment objects

Annotation Store link to URL or file
Capacity Compartment capacity
CapacityUnits Compartment capacity units
Compartments Array of compartments in model

or compartment
ConstantCapacity Specify variable or constant

compartment capacity
Name Specify name of object
Notes HTML text describing SimBiology

object

4-6

addcompartment (model, compartment)

Owner Owning compartment
Parent Indicate parent object
Species Array of species in compartment

object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Create a model object (modelObj).

modelObj = sbiomodel('cell');

2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');
compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');

4 Display the Compartments property in the model object.

get(modelObj, 'Compartments')

SimBiology Compartment Array

Index: Name: Capacity: CapacityUnits:
1 nucleus 1
2 mitochondrion 1
3 matrix 1

4-7

addcompartment (model, compartment)

5 Display the Compartments property in the compartment object.

get(compartmentObj2, 'Compartments')

SimBiology Compartment - matrix

Compartment Components:
Capacity: 1
CapacityUnits:
Compartments: 0
ConstantCapacity: true
Owner: mitochondrion
Species: 0

See Also addproduct, addreactant, addreaction, addspecies, get, set

4-8

addconfigset (model)

Purpose Create configuration set object and add to model object

Syntax configsetObj = addconfigset(modelObj, 'NameValue')
configsetObj = addconfigset(..., 'PropertyName',
PropertyValue, ...)

Arguments
modelObj Model object. Enter a variable name.
NameValue Descriptive name for a configuration set object.

Reserved words 'active' and 'default' are not
allowed.

configsetObj Configuration set object.

Description configsetObj = addconfigset(modelObj, 'NameValue') creates a
configuration set object and returns to configsetObj.

In the configuration set object, this method assigns a value (NameValue)
to the property Name.

configsetObj = addconfigset(..., 'PropertyName', PropertyValue,
...) constructs a configuration set object, configsetObj, and configures
configsetObj with property value pairs. The property name/property
value pairs can be in any format supported by the function set (for
example, name-value string pairs, structures, and name-value cell
array pairs). The configsetObj properties are listed in “Property
Summary” on page 4-10.

A configuration set stores simulation specific information. A model
object can contain multiple configuration sets, with one being active at
any given time. The active configuration set contains the settings that
are used during a simulation. configsetObj is not automatically set
to active. Use the function setactiveconfigset to define the active
configset for modelObj.

Use the method copyobj to copy a configset object and add it to the
modelObj.

4-9

addconfigset (model)

You can additionally view configuration set object properties with the
command get. You can modify additional configuration set object
properties with the command set.

Method
Summary

Methods for configuration set objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
set (any object) Set object properties

Property
Summary

Properties for configuration set objects

Active Indicate object in use during
simulation

CompileOptions Dimensional analysis and unit
conversion options

Name Specify name of object
Notes HTML text describing SimBiology

object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis

options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Set stop time for simulation
StopTimeType Specify type of stop time for

simulation

4-10

addconfigset (model)

TimeUnits Show stop time units for
simulation

Type Display top-level SimBiology
object type

Examples 1 Create a model object by reading the file oscillator.xml and add a
configuration set that simulates the model for 3000 seconds.

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Configure the configsetObj StopTime to 3000.

set(configsetObj, 'StopTime', 3000)
get(configsetObj)

Active: 0
CompileOptions: [1x1 SimBiology.CompileOptions]

Name: 'myset'
Notes: ''

RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.ODESolverOptions]

SolverType: 'ode15s'
StopTime: 3000

StopTimeType: 'simulationTime'
TimeUnits: 'second'

Type: 'configset'

3 Set the new configset to be active, simulate the model using the
new configset, and plot the result.

setactiveconfigset(modelObj, configsetObj);
[t,x] = sbiosimulate(modelObj);

plot (t,x)

See Also get, getconfigset, removeconfigset, set, setactiveconfigset

4-11

addcontent (variant)

Purpose Append content to variant object

Syntax addcontent(variantObj, contents)
addcontent(variantObj1, variantObj2)

Arguments variantObj Specify the variant object to which you want to
append data. The Content property is modified
to add the new data.

contents Specify the data you want to add to a variant
object. Contents can either be a cell array
or an array of cell arrays. A valid cell array
should have the form {'Type', 'Name',
'PropertyName', PropertyValue}, where
PropertyValue is the new value to be applied
for the PropertyName. Valid Type, Name, and
PropertyName values are as follows.

’Type’ ’Name’ ’PropertyName’

'species' Name of the species. If
there are multiple species in
the model with the same
name, specify the species as
[compartmentName.speciesName],
where compartmentName is the
name of the compartment
containing the species.

'InitialAmount'

'parameter' If the parameter scope is a
model, specify the parameter
name. If the parameter scope
is a kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'

4-12

addcontent (variant)

Description addcontent(variantObj, contents) adds the data stored in the variable
contents to the variant object (variantObj).

addcontent(variantObj1, variantObj2) appends the data in the
Content property of the variant object variantObj2 to the Content
property of variant object variantObj1.

Note Remember to use the addcontent method instead of using the
set method on the Content property because the set method replaces
the data in the Content property, whereas addcontent appends the
data.

Examples 1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a
species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also addvariant, rmcontent, sbiovariant

4-13

addevent (model)

Purpose Add event object to model object

Syntax eventObj = addevent(modelObj, 'TriggerValue',
'EventFcnsValue')

eventObj = addevent(...'PropertyName', PropertyValue...)

Arguments
modelObj Model object.
TriggerValue Required property to specify a trigger condition.

Must be a MATLAB expression that evaluates
to a logical value. Use the keyword 'time' to
specify that an event occurs at a specific time
during the simulation. See Trigger for more
information.

EventFcnsValue A string or a cell array of strings, each
of which specifies an assignment of the
form 'objectname = expression', where
objectname is the name of a valid object.
Defines what occurs when the event is
triggered. See EventFcns for more information.

PropertyName Property name for an event object from
“Property Summary” on page 4-15.

PropertyValue Property value. For more information on
property values, see the property reference for
each property listed in “Property Summary” on
page 4-15.

Description eventObj = addevent(modelObj, 'TriggerValue', 'EventFcnsValue')
creates an event object (eventObj) and adds the event to the
model (modelObj). In the event object, this method assigns a value
(TriggerValue) to the property TriggerCondition, assigns a value
(EventFcnsValue) to the property EventFcns, and assigns the model
object (modelObj) to the property Parent. In the model object, this
method appends the event object to the property Events.

4-14

addevent (model)

When the trigger expression in the property Trigger changes from false
to true, the assignments in EventFcns are executed during simulation.

For details on how events are handled during a simulation, see
“Changing Model Component Values Using Events” in the SimBiology
User’s Guide documentation.

eventObj = addevent(...'PropertyName', PropertyValue...) defines
optional properties. The property name and property value pairs can
be any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

You can view additional object properties with the get command. You
can modify additional object properties with the set command. To view
events of a model object (modelObj), use the command get(modelObj,
'Events').

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology

object

4-15

addevent (model)

Parent Indicate parent object
Tag Specify label for SimBiology

object
Trigger Event trigger
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples 1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator')
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Get a list of properties for an event object.

get(modelObj.Events(1));

Or

get(eventObj)

MATLAB displays a list of event properties.

Active: 1
Annotation: ''
EventFcns: {'OpC = 200'}

Name: ''
Notes: ''

Parent: [1x1 SimBiology.Model]
Tag: ''

Trigger: 'time >= 5'
Type: 'event'

UserData: []

4-16

addevent (model)

See Also Event object

4-17

addkineticlaw (reaction)

Purpose Create kinetic law object and add to reaction object

Syntax kineticlawObj = addkineticlaw(reactionObj,
'KineticLawNameValue')

kineticlawObj= addkineticlaw(..., 'PropertyName',
PropertyValue, ...)

Arguments reactionObj Reaction object. Enter a variable name
for a reaction object.

KineticLawNameValue Property to select the type of kinetic law
object to create. For built-in kinetic law,
valid values are:

'Unknown', 'MassAction',
'Henri-Michaelis-Menten',
'Henri-Michaelis-Menten-Reversible',
'Hill-Kinetics’, 'Iso-Uni-Uni',
'Ordered-Bi-Bi', 'Ping-Pong-Bi-Bi',
'Competitive-Inhibition',
'NonCompetitive-Inhibition', and
'UnCompetitive-Inhibition'.

Find valid KineticLawNameValues by
querying the SimBiology root object
with the commands get(sbioroot,
'BuiltInKineticLaws'),
and get(sbioroot,
'UserDefinedKineticLaws').

sbiowhos -kineticlaw lists
BuiltInKineticLaws and
UserDefinedKineticLaws in the
SimBiology root. The root contains
all BuiltInKineticLaws and all
UserDefinedKineticLaws that are added
using sbioaddtolibrary.

4-18

addkineticlaw (reaction)

Description kineticlawObj = addkineticlaw(reactionObj, 'KineticLawNameValue')
creates a kinetic law object and returns the kinetic law object
(kineticlawObj).

In the kinetic law object, this method assigns a name
(KineticLawNameValue) to the property KineticLawName and assigns
the reaction object to the property Parent. In the reaction object, this
method assigns the kinetic law object to the property KineticLaw.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'a -> b');
kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1);
set(kineticlawObj, ParameterVariableName, 'K1_forward');

KineticLawNameValue is any valid abstract kinetic law. See “Abstract
Kinetic Law” on page 6-49 for a definition of abstract kinetic laws and
more information about how they are used to get the reaction rate
expression.

4-19

addkineticlaw (reaction)

kineticlawObj= addkineticlaw(..., 'PropertyName', PropertyValue,
...) constructs a kinetic law object, kineticlawObj, and configures
kineticlawObj with property value pairs. The property name/property
value pairs can be in any format supported by the function set (for
example, name-value string pairs, structures, and name-value cell
array pairs). The kineticlawObj properties are listed in “Property
Summary” on page 4-21.

You can view additional kinetic law object properties with the get
command. You can modify additional kinetic law object properties
with the set command. The kinetic law used to determine the
ReactionRate of the Reaction can be viewed with get(reactionObj,
'KineticLaw'). Remove a SimBiology kinetic law object from a
SimBiology reaction object with the delete command.

Method
Summary

Methods for kinetic law objects

addparameter (model, kineticlaw) Create parameter object and add
to model or kinetic law object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getparameters (kineticlaw) Get specific parameters in kinetic

law object
getspecies (kineticlaw) Get specific species in kinetic law

object
set (any object) Set object properties

4-20

addkineticlaw (reaction)

setparameter (kineticlaw) Specify specific parameters in
kinetic law object

setspecies (kineticlaw) Specify species in kinetic law
object

Property
Summary

Properties for kinetic law objects

Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
KineticLawName Name of kinetic law applied to

reaction
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects
ParameterVariableNames Cell array of reaction rate

parameters
ParameterVariables Parameters in abstract kinetic

law
Parent Indicate parent object
SpeciesVariableNames Cell array of species used in

reaction rate equation
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology

object

4-21

addkineticlaw (reaction)

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples Example 1

This example uses the built-in kinetic law Henri-Michaelis-Menten.

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('Cell');
reactionObj = addreaction (modelObj, 'Substrate -> Product');

2 Define an abstract kinetic law for the reaction object and view the
parameters to be set.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

get (kineticlawObj, 'Expression')

ans =
Vm*S/(Km + S)

The addkineticlaw method adds an abstract kinetic law expression
to the reaction object (reactionObj).

The Henri-Michaelis-Menten kinetic law has two parameters (Vm
and Km) and one species (S). You need to enter values for these
parameters by first creating parameter objects, and then adding the
parameter objects to the kinetic law object.

3 Add parameter objects to a kinetic law object. For example, create a
parameter object parameterObj1 named Vm_d, another paramter
parameterObj2) named Km_d, and add them to a kinetic law object
(kineticlawObj).

parameterObj1 = addparameter(kineticlawObj, 'Vm_d', 'Value', 6.0);

parameterObj2 = addparameter(kineticlawObj, 'Km_d', 'Value', 1.25);

4-22

addkineticlaw (reaction)

The addparameter method creates two parameter objects with
concrete values that will be associated with the abstract kinetic law
parameters.

4 Associate concrete kinetic law parameters with the abstract kinetic
law parameters.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'Substrate'});

This method associates the concrete parameters in the property
ParameterVariableNames with the abstract parameters in the
property ParameterVariables using a one-to-one mapping in the
order given.

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

ans =
Vm_d*Substrate/(Km_d+Substrate)

6 Enter an initial value for the substrate and simulate.

modelObj.Species(1).InitialAmount = 8;
[T, X] = sbiosimulate(modelObj);
plot(T,X)

4-23

addkineticlaw (reaction)

Example 2

This example uses the built-in kinetic law MassAction.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('Cell');
reactionObj = addreaction (modelObj, 'a -> b');

2 Define an abstract kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
get(kineticlawObj, 'Expression')
ans =

4-24

addkineticlaw (reaction)

MassAction

Notice, the property Expression for an abstract kinetic law with
property Type set to MassAction does not show the parameters and
species in the reaction rate.

3 Assign the rate constant for the reaction.

parameterObj = addparameter(kineticlawObj, 'k_forward');
set (kineticlawObj, 'ParameterVariablenames', 'k_forward');
get (reactionObj, 'ReactionRate')

ans =
k_forward*a

4 Enter an initial value for the substrate and simulate.

modelObj.Species(1).InitialAmount = 100;
[T, X] = sbiosimulate(modelObj);plot(T,X)

The value used for k_forward is the default value = 1.0.

4-25

addkineticlaw (reaction)

See Also addreaction, setparameter

4-26

addmodel (model)

Purpose Add submodel object to model object

Note addmodel produces a warning and will be removed in a future
version. Submodels will not be supported in future releases. Use the
function sbioupdate to convert submodels into models.

Syntax submodelObj = addmodel(modelObj, 'NameValue')
submodelObj = addmodel(...’PropertyName', PropertyValue...)

Arguments
modelObj Model object. Enter a name for a model object.
NameValue Descriptive name for a model object. Enter a

unique character string. A model object can be
referenced by other objects using this property.

submodelObj Model object to be added as a submodel.

Description submodelObj = addmodel(modelObj, 'NameValue') creates a
submodel object and returns to submodelObj. In the submodel object,
this method assigns a value (NameValue) to the property Name, and
assigns the model object (modelObj) to the property Parent. In the
model object, this method assigns the submodel object to the property
Models.

modelObj = sbiomodel('cell')
submodelObj = addmodel('nucleus')

4-27

addmodel (model)

A model object must have a unique name at the level it is created.
For example, if you create a model with the name cell, you cannot
create another model object named cell. However, a model object can
contain a submodel object named cell which can contain a submodel
object named cell.

modelObj does not have access to submodelObj parameters. However,
submodelObj does have access and can use modelObj parameters.

submodelObj = addmodel(...’PropertyName', PropertyValue...)
defines optional property values. The property name/property value
pairs can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

You can view additional model object properties with the function get.
You can change additional model object properties with the function
set. You can view the submodel objects of modelObj with the command
get(modelObj, 'Models').

See Also sbiomodel, sbioupdate

4-28

addparameter (model, kineticlaw)

Purpose Create parameter object and add to model or kinetic law object

Syntax parameterObj = addparameter(Obj, 'NameValue')
parameterObj = addparameter(Obj, 'NameValue', ValueValue)
parameterObj = addparameter(...'PropertyName', PropertyValue...)

Arguments
Obj Model or kinetic law object. Enter a variable

name for the object.
NameValue Property for a parameter object. Enter a unique

character string. NameValue can be a cell array
of parameter names. Since objects can use this
property to reference a parameter, a parameter
object must have a unique name at the level it
is created. For example, a kinetic law object
cannot contain two parameter objects named
kappa. However, the model object that contains
the kinetic law object can contain a parameter
object named kappa along with the kinetic law
object.

For information on naming parameters, see
Name.

ValueValue Property for a parameter object. Enter a
number.

Description parameterObj = addparameter(Obj, 'NameValue') creates a parameter
object and returns the object (parameterObj). In the parameter object,
this method assigns a value (NameValue) to the property Name, assigns
a value 1 to the property Value, and assigns the model or kinetic law
object to the property Parent. In the model or kinetic law object, (Obj),
this method assigns the parameter object to the property Parameters.

A parameter object defines an assignment that a model or a kinetic
law can use. The scope of the parameter is defined by the parameter
parent. If a parameter is defined with a kinetic law object, then only the

4-29

addparameter (model, kineticlaw)

kinetic law object and objects within the kinetic law object can use the
parameter. If a parameter object is defined with a model object as its
parent, then all objects within the model (including all rules, events and
kinetic laws) can use the parameter.

modelObj = sbiomodel('cell')
parameterObj = addparameter(modelObj, 'TF1', 0.01)

modelObj = sbiomodel('cell')
reactionObj = addreaction(modelObj, 'a -> b')
kineticlawObj = addkineticlaw (reactionObj, 'MassAction')
parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1)

4-30

addparameter (model, kineticlaw)

parameterObj = addparameter(Obj, 'NameValue', ValueValue) creates
a parameter object, assigns a value (NameValue) to the property Name,
assigns the value (ValueValue) to the property Value, and assigns the
model object or the kinetic law object to the property Parent. In the
model or kinetic law object (Obj), this method assigns the parameter
object to the property Parameters, and returns the parameter object to
a variable (parameterObj).

parameterObj = addparameter(...'PropertyName', PropertyValue...)
defines optional property values. The property name/property value
pairs can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

Scope of a parameter— A parameter can be scoped to either a model
or a kinetic law.

• When a kinetic law searches for a parameter in its expression, it first
looks in the parameter list of the kinetic law. If the parameter isn’t
found there, it moves to the model that the kinetic law object is in
and looks in the model parameter list. If the parameter isn’t found
there, it moves to the model parent.

• When a rule searches for a parameter in its expression, it looks in
the parameter list for the model. If the parameter isn’t found there,
it moves to the model parent. A rule cannot use a parameter that
is scoped to a kinetic law. So for a parameter to be used in both a
reaction rate equation and a rule, the parameter should be scoped
to a model.

Additional parameter object properties can be viewed with the get
command. Additional parameter object properties can be modified with
the set command. The parameters of Obj can be viewed with get(Obj,
'Parameters').

A SimBiology parameter object can be copied to a SimBiology model or
kinetic law object with copyobj. A SimBiology parameter object can be
removed from a SimBiology model or kinetic law object with delete.

4-31

addparameter (model, kineticlaw)

Method
Summary

Methods for parameter objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

Property
Summary

Properties for parameter objects

Annotation Store link to URL or file
ConstantValue Specify variable or constant

parameter value
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object
Value Assign value to parameter object
ValueUnits Parameter value units

4-32

addparameter (model, kineticlaw)

Example 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

3 Add a parameter and assign it to the kinetic law object
(kineticlawObj); add another parameter and assign to the model
object (modelObj).

% Add parameter to kinetic law object
parameterObj1 = addparameter (kineticlawObj, 'K1');

get (kineticlawObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K1 1

% Add parameter with value 0.9 to model object
parameterObj1 = addparameter (modelObj, 'K2', 0.9);

get (modelObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K2 1

See Also addreaction

4-33

addproduct (reaction)

Purpose Add product species object to reaction object

Syntax speciesObj = addproduct(reactionObj, 'NameValue')
speciesObj = addproduct(reactionObj, speciesObj)
speciesObj = addproduct(reactionObj, 'NameValue',

Stoichcoefficient)
speciesObj = addproduct(reactionObj, speciesObj,

Stoichcoefficient)

Arguments
reactionObj Reaction object. Enter a name for the reaction

object.
NameValue Property of a species object that names the

object (not the reaction object). Enter a unique
character string. For example, 'fructose
6-phosphate'. A species object can be
referenced by other objects using this property.
You can use the function sbioselect to find an
object with a specific NameValue.

speciesObj Species object.
Stoichcoeffieient Stoichiometric coefficients for products, length

of array equal to length of NameValue, or length
of speciesObj.

Description speciesObj = addproduct(reactionObj, 'NameValue') creates
a species object and returns the species object (speciesObj). In
the species object, this method assigns the value (NameValue) to
the property Name. In the reaction object, this method assigns the
species object to the property Products, modifies the reaction equation
in the property Reaction to include the new species, and adds the
stoichiometric coefficient 1 to the property Stoichiometry.

When you define a reaction with a new species:

4-34

addproduct (reaction)

• If no compartment objects exist in the model, the method creates a
compartment object (called 'unnamed') in the model and adds the
newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the
method creates a species object in that compartment.

• If there is more than one compartment object (compObj) in the model,
you must qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species
named glucose into a compartment named cell. Additionally, if the
compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

Create and add a species object to a compartment object with the
method addspecies.

speciesObj = addproduct(reactionObj, speciesObj), in the species
object (speciesObj), assigns the parent object of the reactionObj to
the species property Parent. In the reaction object (reactionObj),
it assigns the species object to the property Products, modifies the
reaction equation in the property Reaction to include the new species,
and adds the stoichiometric coefficient 1 to the property Stoichiometry.

speciesObj = addproduct(reactionObj, 'NameValue',
Stoichcoefficient), in addition to the description above, adds the
stoichiometric coefficient (Stoichcoefficient) to the property
Stoichiometry. If NameValue is a cell array of species names, then
Stoichcoefficient must be a vector of doubles with the same length
as NameValue.

speciesObj = addproduct(reactionObj, speciesObj,
Stoichcoefficient), in addition to the description above,
adds the stoichiometric coefficient (Stoichcoefficient) to the property
Stoichiometry.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the Name of a species the reaction also

4-35

addproduct (reaction)

uses the new name. You must however configure all other applicable
elements such as rules that use the species, and the kinetic law object.

Examples 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A + C -> U');

2 Modify the reaction of the reactionObj from A + C -> U to A + C
-> U + 2 H.

speciesObj = addproduct(reactionObj, 'H', 2);

See Also addspecies, sbiospecies

4-36

addreactant (reaction)

Purpose Add species object as reactant to reaction object

Syntax speciesObj = addreactant(reactionObj, 'NameValue')
addreactant(reactionObj, speciesObj, Stoichcoeffieient)
addreactant(reactionObj, 'NameValue', Stoichcoeffieient)

Arguments
reactionObj Reaction object.
NameValue Name property of a species object. Enter

a unique character string, for example,
'glucose'. A species object can be
referenced by other objects using this
property. You can use the function
sbioselect to find an object with a specific
Name property value.

speciesObj Species object or cell array of species objects.
Stoichcoeffieient Stoichiometric coefficients for reactants,

length of array equal to length of NameValue
or length of speciesObj.

Description speciesObj = addreactant(reactionObj, 'NameValue') creates
a species object and returns the species object (speciesObj). In the
species object, this method assigns the value (NameValue) to the
property Name. In the reaction object, this method assigns the species
object to the property Reactants, modifies the reaction equation
in the property Reaction to include the new species, and adds the
stoichiometric coefficient -1 to the property Stoichiometry.

When you define a reaction with a new species:

• If no compartment objects exist in the model, the method creates a
compartment object (called 'unnamed') in the model and adds the
newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the
method creates a species object in that compartment.

4-37

addreactant (reaction)

• If there is more than one compartment object (compObj) in the model,
you must qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species
named glucose into a compartment named cell. Additionally, if the
compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

Create and add a species object to a compartment object with the
method addspecies.

addreactant(reactionObj, speciesObj, Stoichcoeffieient), in the
species object (speciesObj), assigns the parent object to the speciesObj
property Parent. In the reaction object (reactionObj), it assigns
the species object to the property Reactants, modifies the reaction
equation in the property Reaction to include the new species, and adds
the stoichiometric coefficient -1 to the property Stoichiometry. If
speciesObj is a cell array of species objects, then Stoichcoeffieient
must be a vector of doubles with the same length as speciesObj.

addreactant(reactionObj, 'NameValue', Stoichcoeffieient), in
addition to the description above, adds the stoichiometric coefficient
(Stoichcoeffieient) to the property Stoichiometry. If NameValue is
a cell array of species names, then Coefficient must be a vector of
doubles with the same length as NameValue.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the Name of a species the reaction also
uses the new name. You must, however, configure all other applicable
elements such as rules that use the species, and the kinetic law object.

See for more information on species names.

Example 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A -> U');

2 Modify the reaction of the reactionObj from A -> U to be A + 3
C -> U.

4-38

addreactant (reaction)

speciesObj = addreactant(reactionObj, 'C', 3);

See Also addspecies, sbiospecies

4-39

addreaction (model)

Purpose Create reaction object and add to model object

Syntax reactionObj = addreaction(modelObj,'ReactionValue')
reactionObj = addreaction(modelObj, 'ReactantsValue',

’ProductsValue’)
reactionObj = addreaction(modelObj, 'ReactantsValue',

RStoichCoefficients, 'ProductsValue',
PStoichCoefficients)

reactionObj = addreaction(...'PropertyName', PropertyValue...)

Arguments
modelObj SimBiology model object.
ReactionValue Specify the reaction equation. Enter a

character string. A hyphen preceded by a
space and followed by a right angle bracket
(->) indicates reactants going forward to
products. A hyphen with left and right
angle brackets (<->) indicates a reversible
reaction. Coefficients before reactant or
product names must be followed by a space.

Examples are 'A -> B', 'A + B -> C',
'2 A + B -> 2 C', and 'A <-> B'. Enter
reactions with spaces between the species.

If there are multiple compartments, or
to specify the compartment name, use
compartmentName.speciesName.

Examples are 'cytoplasm.A ->
cytoplasm.B', 'cytoplasm.A ->
nucleus.A', and 'cytoplasm.A +
cytoplasm.B -> nucleus.AB'.

4-40

addreaction (model)

ReactantsValue A string defining the species name, a cell
array of strings, a species object, or an array
of species objects. If using name strings,
qualify with compartment names if there
are multiple compartments.

ProductsValue A string defining the species name, a cell
array of strings, a species object, or an array
of species objects. If using name strings,
qualify with compartment names if there
are multiple compartments.

RStoichCoefficients Stoichiometric coefficients for reactants,
length of array equal to length of
ReactantsValue.

PStoichCoefficients Stoichiometric coefficients for products,
length of array equal to length of
ProductsValue.

Description reactionObj = addreaction(modelObj,'ReactionValue') creates a
reaction object, assigns a value (ReactionValue) to the property
Reaction, assigns reactant species object(s) to the property Reactants,
assigns the product species object(s) to the property Products, and
assigns the model object to the property Parent. In the Model object
(modelObj), this method assigns the reaction object to the property
Reactions, and returns the reaction object (reactionObj).

reactionObj = addreaction(modelObj, 'a -> b')

When you define a reaction with a new species:

4-41

addreaction (model)

• If no compartment objects exist in the model, the method creates a
compartment object (called 'unnamed') in the model and adds the
newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the
method creates a species object in that compartment.

• If there is more than one compartment object (compObj) in the model,
you must qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species
named glucose into a compartment named cell. Additionally, if the
compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

You can manually add a species to a compartment object with the
method addspecies.

You can add species to a reaction object using the methods addreactant
or addproduct. You can remove species from a reaction object with the
methods rmreactant or rmproduct. The property Reaction is modified
by adding or removing species from the reaction equation.

You can copy a SimBiology reaction object to a model object with the
function copyobj. You can remove the SimBiology reaction object from
a SimBiology model object with the function delete.

You can view additional reaction object properties with the get
command. For example, the reaction equation of reactionObj can be
viewed with the command get(reactionObj, 'Reaction'). You can
modify additional reaction object properties with the command set.

reactionObj = addreaction(modelObj, 'ReactantsValue',
’ProductsValue’) creates a reaction object, assigns a value to the
property Reaction using the reactant (ReactantsValue) and product
(ProductsValue) names, assigns the species objects to the properties
Reactants and Products, and assigns the model object to the property
Parent. In the model object (modelObj), this method assigns the
reaction object to the property Reactions, and returns the reaction
object (reactionObj). The stoichiometric values are assumed to be 1.

4-42

addreaction (model)

reactionObj = addreaction(modelObj, 'ReactantsValue',
RStoichCoefficients, 'ProductsValue', PStoichCoefficients) adds
stoichiometric coefficients (RStoichCoefficients) for reactant species,
and stoichiometric coefficients (PStoichCoefficients) for product
species to the property Stoichiometry. The length of Reactants
and RCoefficients must be equal, and the length of Products and
PCoefficients must be equal.

reactionObj = addreaction(...'PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

Method
Summary

Methods for reaction objects

addkineticlaw (reaction) Create kinetic law object and add
to reaction object

addproduct (reaction) Add product species object to
reaction object

addreactant (reaction) Add species object as reactant to
reaction object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rmproduct (reaction) Remove species object from

reaction object products
rmreactant (reaction) Remove species object from

reaction object reactants
set (any object) Set object properties

4-43

addreaction (model)

Property
Summary

Properties for reaction objects

Active Indicate object in use during
simulation

Annotation Store link to URL or file
KineticLaw Show kinetic law used for

ReactionRate

Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction

object
Reversible Specify whether reaction is

reversible or irreversible
Stoichiometry Species coefficients in reaction
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples Create a model, add a reaction object, and assign the expression for
the reaction rate equation.

1 Create a model object, and then add a reaction object.

4-44

addreaction (model)

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) and one species variable (S) that should to be
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with names
Vm_d, and Km_d, and assign the objects Parent property value to
the kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});

set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)

See Also addkineticlaw, addproduct, addreactant, rmproduct, rmreactant

4-45

addrule (model)

Purpose Create rule object and add to model object

Syntax ruleObj = addrule(modelObj, 'RuleValue')
ruleObj = addrule(modelObj, 'RuleValue', 'RuleTypeValue')
ruleObj = addrule(..., 'PropertyName', PropertyValue,...)

Arguments
modelObj Model object to which to add the rule.
RuleValue Enter a character string within quotation

marks. For example, enter the algebraic rule
'Va*Ea + Vi*Ei - K2'.

RuleTypeValue Enter 'algebraic', 'initialassignment',
'repeatedAssignment', or 'rate'. See
RuleType for more information.

Description A rule is a mathematical expression that changes the amount of a
species or the value of a parameter. It also defines how species and
parameters interact with one another.

ruleObj = addrule(modelObj, 'RuleValue') creates a rule object and
returns the rule object (ruleObj). In the rule object, this method
assigns a value ('RuleValue') to the property Rule, assigns the value
'algebraic' to the property RuleType, and assigns the model object
(modelObj) to the property Parent. In the model object (modelObj), this
method assigns the rule object to the property Rules.

ruleObj = addrule(modelObj, 'RuleValue', 'RuleTypeValue') in
addition to the assignments above, assigns a value (RuleTypeValue) to
the property RuleType. For more information on the different types of
rules, see RuleType.

ruleObj = addrule(..., 'PropertyName', PropertyValue,...) defines
optional properties. The property name/property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

4-46

addrule (model)

View additional rule properties with the function get, and modify rule
properties with the function set. Copy a rule object to a model with
the function copyobj, or delete a rule object from a model with the
function delete.

Method
Summary

Methods for rule objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Properties for rule objects

Active Indicate object in use during
simulation

Annotation Store link to URL or file
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Rule Specify species and parameter

interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology

object

4-47

addrule (model)

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples Add a rule with the default RuleType.

1 Create a model object, and then add a rule object.

modelObj = sbiomodel('cell');
ruleObj = addrule(modelObj, '0.1*B-A')

2 Get a list of properties for a rule object.

get(modelObj.Rules(1)) or get(ruleObj)

MATLAB displays a list of rule properties.

Active: 1
Annotation: ''

Name: ''
Notes: ''

Parent: [1x1 SimBiology.Model]
Rule: '0.1*B-A'

RuleType: 'algebraic'
Tag: ''

Type: 'rule'
UserData: []

Add a rule with the RuleType property set to rate.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

4-48

addrule (model)

2 Add a rule which defines that the quantity of a species c. In the rule
expression, k is the rate constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from default ('algebraic') to 'rate', and
verify using the get command.

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object.

Active: 1
Annotation: ''

Name: ''
Notes: ''

Parent: [1x1 SimBiology.Model]
Rule: 'c = k*(a+b)'

RuleType: 'rate'
Tag: ''

Type: 'rule'
UserData: []

See Also copyobj, delete, sbiomodel

4-49

addspecies (compartment)

Purpose Create species object and add to compartment object

Syntax speciesObj = addspecies(compObj, 'NameValue')
speciesObj = addspecies(compObj, 'NameValue',

InitialAmountValue)
speciesObj = addspecies(...'PropertyName', PropertyValue...)

Arguments
compObj Compartment object.
NameValue Name for a species object. Enter a character

string unique within compObj. Species
objects are identified by name within Event,
ReactionRate, and Rule property strings.
For information on naming species, see Name.

You can use the function sbioselect to find
an object with a specific Name property value.

InitialAmountValue Initial amount value for the species object.
Enter double. Positive real number, default
= 0.

PropertyName Enter the name of a valid property. Valid
property names are listed in “Property
Summary” on page 4-52.

PropertyValue Enter the value for the property specified in
PropertyName. Valid property values are
listed on each property reference page.

Description speciesObj = addspecies(compObj, 'NameValue') creates a species
object and returns the species object (speciesObj). In the species
object, this method assigns a value (NameValue) to the property Name,
and assigns the compartment object (compObj) to the property Parent.
In the compartment object, this method assigns the species object to
the property Species.

4-50

addspecies (compartment)

speciesObj = addspecies(compObj, 'NameValue',
InitialAmountValue), in addition to the above, assigns an initial
amount (InitialAmountValue) for the species.

You can also add a species to a reaction using the methods addreactant
and addproduct.

A species object must have a unique name at the level at which it is
created. For example, a compartment object cannot contain two species
objects named H2O. However, another compartment can have a species
named H2O.

View properties for a species object with the get command, and modify
properties for a species object with the set command. You can view
a summary table of species objects in a compartment (compObj) with
get(compObj, 'Species') or the properties of the first species with
get(compObj.Species(1)).

speciesObj = addspecies(...'PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).
The property summary on this page shows the list of properties.

If there is more than one compartment object (compObj) in the model,
you must qualify the species name with the compartment name. For
example, cell.glucose denotes that you want to put the species
named glucose into a compartment named cell. Additionally, if the
compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

If you change the name of a species you must configure all applicable
elements, such as events and rules that use the species, any
user-specified ReactionRate, or the kinetic law object property
SpeciesVariableNames. Use the method setspecies to configure
SpeciesVariableNames.

To update species names in the SimBiology graphical user interface,
access each appropriate pane through the Project Explorer. You can
also use the Find feature to locate the names that you want to update.

4-51

addspecies (compartment)

The Output pane opens with the results of Find. Double-click a result
row to go to the location of the model component.

Species names are automatically updated for reactions that use
MassAction kinetic law.

Method
Summary

Methods for species objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

Property
Summary

Properties for species objects

Annotation Store link to URL or file
BoundaryCondition Indicate species boundary

condition
ConstantAmount Specify variable or constant

species amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object

4-52

addspecies (compartment)

Tag Specify label for SimBiology
object

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

Examples Add two species to a model, where one is a reactant and the other is the
enzyme catalyzing the reaction.

1 Create a model object named my_model and add a compartment
object.

modelObj = sbiomodel ('my_model');
compObj = addcompartment(modelObj, 'comp1');

2 Add two species objects named glucose_6_phosphate and
glucose_6_phosphate_dehydrogenase.

speciesObj1 = addspecies (compObj, 'glucose_6_phosphate');
speciesObj2 = addspecies (compObj, ...

'glucose_6_phosphate_dehydrogenase');

3 Set the initial amount of glucose_6_phosphate to 100 and verify.

set (speciesObj1, 'InitialAmount',100);
get (speciesObj1, 'InitialAmount')

MATLAB returns:

ans =

100

4 Use get to note that modelObj contains the species object array.

get(compObj, 'Species')

4-53

addspecies (compartment)

MATLAB returns:

SimBiology Species Array

Index: Name: InitialAmount: InitialAmountUnits:

1 glucose_6_phosphate 100

2 glucose_6_phosphate_dehydrogenase 0

5 Retrieve information about the first species in the array.

get(compObj.Species(1))
Annotation: ''

BoundaryCondition: 0
ConstantAmount: 0
InitialAmount: 100

InitialAmountUnits: ''
Name: 'glucose_6_phosphate'

Notes: ''
Parent: [1x1 SimBiology.Compartment]

Tag: ''
Type: 'species'

UserData: []

See Also addcompartment, addproduct, addreactant, addreaction, get, set

4-54

addvariant (model)

Purpose Add variant to model

Syntax variantObj = addvariant(modelObj, 'NameValue')
variantObj2 = addvariant(modelObj, variantObj)

Arguments
modelObj Specify the model object to which you want add

a variant.
variantObj Variant object to create and add to the model

object.
NameValue Name of the variant object. NameValue is

assigned to the Name property of the variant
object.

Description variantObj = addvariant(modelObj, 'NameValue') creates a SimBiology
variant object (variantObj) with the name NameValue and adds the
variant object to the SimBiology model object modelObj. The variant
object Parent property is assigned the value of modelObj.

A SimBiology variant object stores alternate values for properties on
a SimBiology model. For more information on variants, see Variant
object.

variantObj2 = addvariant(modelObj, variantObj) adds a SimBiology
variant object (variantObj) to the SimBiology model object and returns
another variant object variantObj2. The variant object variantObj2
Parent property is assigned the value of modelObj.

View properties for a variant object with the get command, and modify
properties for a variant object with the set command.

Note Remember to use the addcontent method instead of using the
set method on the Content property, because the set method replaces
the data in the Content property, whereas addcontent appends the
data.

4-55

addvariant (model)

To view the variants stored on a model object, use the getvariant
method. To copy a variant object to another model, use copyobj. To
remove a variant object from a SimBiology model, use the delete
method.

Examples 1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a
species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also addcontent, commit, copyobj, delete, getvariant

4-56

Configset object

Purpose Solver settings information for model simulation

Description The SimBiology configset object, also known as the configuration set
object, contains the options that the solver uses during simulation of
the model object. The configuration set object contains the following
options for you to choose:

• Type of solver

• Stop time for the simulation

• Solver error tolerances, and for ode solvers — the maximum time
step the solver should take

• Whether to perform sensitivity analysis during simulation

• Whether to perform dimensional analysis and unit conversion during
simulation

• Species and parameter input factors for sensitivity analysis

A SimBiology model can contain multiple configsets with one being
active at any given time. The active configset contains the settings that
are used during the simulation. Use the method setactiveconfigset
to define the active configset. Use the method getconfigset to return a
list of configsets contained by a model. Use the method addconfigset
to add a new configset to a model.

See “Property Summary” on page 4-58 for links to configset object
property reference pages.

Properties define the characteristics of an object. Use the get and
set commands to list object properties and change their values at the
command line. You can graphically change object properties in the
SimBiology desktop.

Constructor
Summary

addconfigset (model) Create configuration set object
and add to model object

4-57

Configset object

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

CompileOptions Dimensional analysis and unit
conversion options

Name Specify name of object
Notes HTML text describing SimBiology

object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis

options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Set stop time for simulation
StopTimeType Specify type of stop time for

simulation
TimeUnits Show stop time units for

simulation
Type Display top-level SimBiology

object type

4-58

Configset object

See Also AbstractKineticLaw object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object,
Species object

4-59

commit (variant)

Purpose Commit variant contents to model

Syntax commit(variantObj, modelObj)

Arguments
modelObj Specify the model object to which you want to

commit a variant.
variantObj Variant object to commit to the model object.

Description commit(variantObj, modelObj) commits the Contents property of a
SimBiology variant object (variantObj) to the model object modelObj.
The property values stored in the variant object replace the values
stored in the model.

A SimBiology variant object stores alternate values for properties on
a SimBiology model. For more information on variants, see Variant
object.

The Contents are set on the model object in order of occurrence, with
duplicate entries overwriting. If the commit method finds an incorrectly
specified entry, an error occurs and the remaining properties defined in
the Contents property are not set.

Examples 1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A', 10);

2 Add a variant object that varies the InitialAmount property of a
species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

3 Commit the contents of the variant (variantObj).

4-60

commit (variant)

commit (variantObj, modelObj);

See Also addvariant, Variant object

4-61

Compartment object

Purpose Options for compartments

Description The SimBiology compartment object represents a container for species
in a model. Compartment size can vary or remain constant during a
simulation. All models must have at least one compartment and all
species in a model must be assigned to a compartment. Compartment
names must be unique within a model.

Compartments allow you to define the size (Capacity) of physically
isolated regions that may affect simulation, and associate pools of
species within those regions. You can specify or change Capacity using
rules, events, and variants, similar to species amounts or parameter
values.

The model object stores compartments as a flat list. Each compartment
stores information on its own organization; in other words a
compartment has information on which compartment it lives within
(Owner) and who it contains (Compartments).

The flat list of compartments in the model object lets you vary the way
compartments are organized in your model without invalidating any
expressions.

To add species that participate in reactions, add the reaction to the
model using the addreaction method. When you define a reaction with
a new species:

• If no compartment objects exist in the model, the addreaction
method creates a compartment object (called 'unnamed') in the model
and adds the newly created species to that compartment.

• If only one compartment object exists in the model, the method
creates a species object in that compartment.

• If there is more than one compartment object in the model, you must
qualify the species name with the compartment name.

For example, cell.glucose denotes that you want to put the species
named glucose into a compartment named cell. Additionally, if the

4-62

Compartment object

compartment named cell does not exist, the process of adding the
reaction creates the compartment and names it cell.

Alternatively, create and add a species object to a compartment object,
using the addspecies method at the command line.

The SimBiology desktop adds a default compartment (unnamed) for
you and you can add a species in the Species pane. In the Project
Explorer, expand Compartment and double-click Species to open
the Species pane.

You can specify reactions that cross compartments
using the syntax compartment1Name.species1Name –>
compartment2Name.species2Name. If you add a reaction that
contains species from different compartments, and the reaction rate
dimensions are concentration/time, all reactants should be from the
same compartment.

In addition, if the reaction is reversible then there are two cases:

• If the kinetic law is MassAction, and the reaction rate reaction rate
dimensions are concentration/time, then the products must be from
the same compartment.

• If the kinetic law is not MassAction, then both reactants and
products must be in the same compartment.

See “Property Summary” on page 4-64 for links to compartment
property reference pages. Properties define the characteristics of an
object. Use the get and set commands to list object properties and
change their values at the command line. You can graphically change
object properties in the graphical user interface.

Constructor
Summary

addcompartment (model,
compartment)

Create compartment object

4-63

Compartment object

Method
Summary

Methods for compartment objects

addcompartment (model,
compartment)

Create compartment object

addspecies (compartment) Create species object and add to
compartment object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rename (compartment,
parameter, species)

Rename object and update
expressions

reorder (model, compartment) Reorder component lists
set (any object) Set object properties

Property
Summary

Properties for compartment objects

Annotation Store link to URL or file
Capacity Compartment capacity
CapacityUnits Compartment capacity units
Compartments Array of compartments in model

or compartment
ConstantCapacity Specify variable or constant

compartment capacity
Name Specify name of object
Notes HTML text describing SimBiology

object

4-64

Compartment object

Owner Owning compartment
Parent Indicate parent object
Species Array of species in compartment

object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Parameter object, Reaction object, Root
object, Rule object

4-65

copyobj (any object)

Purpose Copy SimBiology object and its children

Syntax copiedObj = copyobj(Obj, parentObj)
copiedObj = copyobj(modelObj)

Arguments
Obj Abstract kinetic law, compartment, configuration

set, event, kinetic law, model, parameter, reaction,
rule, species, or variant object.

parentObj

If copiedObj is... parentObj must be...

configuration set,
event, reaction, rule, or
variant object

model object

compartment object compartment or model
object

species object compartment object
parameter object model or kinetic law

object
kinetic law object reaction object
model object or abstract
kinetic law object

sbioroot

modelObj Model object to be copied.
copiedObj Output returned by the copyobj method with

the parent set as specified in input argument
(parentObj).

Description copiedObj = copyobj(Obj, parentObj) makes a copy of a SimBiology
object (Obj) and returns a pointer to the copy (copiedObj). In the copied
object (copiedObj), this method assigns a value (parentObj) to the
property Parent.

4-66

copyobj (any object)

copiedObj = copyobj(modelObj) makes a copy of a model object
(modelObj) and returns the copy (copiedObj). In the copied model object
(copiedObj), this method assigns the root object to the property Parent.

Examples Create a reaction object separate from a model object, and then add it
to a model.

1 Create a model object and add a reaction object.

modelObj1 = sbiomodel('cell');
reactionObj = addreaction(modelObj1, 'a -> b');

2 Create a copy of the reaction object and assign it to another model
object.

modelObj2 = sbiomodel('cell2');
reactionObjCopy = copyobj(reactionObj, modelObj2);
modelObj2.Reactions

SimBiology Reaction Array

Index: Reaction:
1 a -> b

See Also sbiomodel, sbioroot

4-67

delete (any object)

Purpose Delete SimBiology object

Syntax delete(Obj)

Arguments
Obj SimBiology object: abstract kinetic law,

configuration set, kinetic law, model,
parameter, reaction, rule, or species.

Description delete(Obj) removes an object (Obj) from its parent.

• If Obj is a species object that is being used by a reaction object, this
method returns an error and the species object is not deleted. You
need to delete the reaction or remove the species from the reaction
before you can delete the species object.

• If Obj is a parameter object being used by a kinetic law object, there
is no warning when the object is deleted. However, when you try to
simulate your model, a error occurs because the parameter cannot
be found.

• If Obj is a reaction object, this method deletes the object, but the
species objects that were being used by the reaction object are not
deleted.

• If Obj is an abstract kinetic law object and there is a kinetic law
object referencing it, this method returns an error.

• If Obj is a SimBiology configuration set object, and it is the active
configuration set object, this method, after deleting the object, makes
the default configuration set object active. Note that you cannot
delete the default configuration set.

• You cannot delete the SimBiology root.

You can also delete all model objects from the root with one call to the
sbioreset function.

4-68

delete (any object)

Examples Example 1

Delete a reaction from a model. Notice the species objects are not
deleted with the reaction object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'a -> b');
delete(reactionObj)

Example 2

Delete a single model from the root object.

modelObj1 = sbiomodel('cell');
modelObj2 = sbiomodel('virus');
delete(ModelObj2)

See Also sbiomodel, sbioreset, sbioroot

4-69

display (any object)

Purpose Display summary of SimBiology object

Syntax display(Obj)

Arguments
Obj SimBiology object: abstract kinetic law,

configuration set, compartment, event, kinetic law,
model, parameter, reaction, rule, species, or unit.

Description Display the SimBiology object array. display(Obj) is called for the
SimBiology object, Obj when the semicolon is not used to terminate
a statement. The display of Obj gives a brief summary of the Obj
configuration. You can view a complete list of Obj properties with the
command get. You can modify all Obj properties that can be changed,
with the command set.

Examples modelObj = sbiomodel('cell')
reactionObj = addreaction(modelObj, 'A + B -> C')

4-70

Event object

Purpose Store event information

Description Events are used to describe sudden changes in model behavior. An
event lets you specify discrete transitions in model component values
that occur when a user-specified condition become true. You can specify
that the event occurs at a particular time, or specify a time-independent
condition.

For details on how events are handled during a simulation, see
“Changing Model Component Values Using Events” in the SimBiology
User’s Guide documentation.

See “Property Summary” on page 4-72 for links to event property
reference pages.

Properties define the characteristics of an object. For example, an event
object includes properties that allow you to specify the conditions to
trigger an event (Trigger), and what to do after the event is triggered
(EventFcn). Use the get and set commands to list object properties and
change their values at the command line. You can graphically change
object properties in the SimBiology desktop.

Constructor
Summary

addevent (model) Add event object to model object

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

4-71

Event object

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object
Trigger Event trigger
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Parameter object, Reaction object, Root
object, Rule object, Species object

4-72

get (any object)

Purpose Get object properties

Syntax PropertyValue = get(Obj, ’PropertyName’)
objProperties = get(Obj)

Arguments
PropertyValue Value defined for 'PropertyName'
Obj Abstract kinetic law, compartment, configuration

set, event, kinetic law, model, parameter, reaction,
rule, species, or variant object.

'PropertyName' Name of the property to get. For properties that you
can get for each object, see AbstractKineticLaw
object, Configset object, KineticLaw object,
Model object, Parameter object, Reaction
object, Rule object, Species object , Variant
object

objProperties Struct containing properties and values for the
object, Obj.

Description PropertyValue = get(Obj, ’PropertyName’) gets the value
’PropertyValue’ of the object, Obj’s PropertyName property.

objProperties = get(Obj) gets the properties for the object, Obj, and
returns it to objProperties.

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add parameter object.

4-73

get (any object)

parameterObj = addparameter (modelObj, 'kf');

3 Set the ConstantValue property of the parameter object to false
and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);
get(parameterObj, 'ConstantValue')

MATLAB returns

ans =

0

See Also getadjacencymatrix, getconfigset, getdata, getparameters,
getsensmatrix, getspecies, getstoichmatrix, set

4-74

getadjacencymatrix (model)

Purpose Get adjacency matrix from model object

Syntax M = getadjacencymatrix(modelObj)
M = getadjacencymatrix(modelObj,'flat')
[M, Headings] = getadjacencymatrix(modelObj)
[M, Headings, Mask] = getadjacencymatrix(modelObj)

Arguments
M Adjacency matrix for modelObj.
modelObj Specify the model object.
'flat' Return adjacency matrix for only specified

modelObj, not for objects contained in the
modelObj.

Headings Return row and column headings. If species
are in multiple compartments, species names
are qualified with the compartment name in
the form compartmentName.speciesName. For
example, nucleus.DNA, cytoplasm.mRNA.

Mask Return 1 for the species object and 0 for the
reaction object to Mask.

Description getadjacencymatrix returns the adjacency matrix for a model object.

M = getadjacencymatrix(modelObj) returns an adjacency matrix for
the model object (modelOBJ) to M.

An adjacency matrix is defined by listing all species contained by
modelObj and all reactions contained by modelObj column-wise and
row-wise in a matrix. The reactants of the reactions are represented
in the matrix with a 1 at the location of [row of species, column of
reaction]. The products of the reactions are represented in the matrix
with a 1 at the location of [row of reaction, column of species]. All other
locations in the matrix are 0.

4-75

getadjacencymatrix (model)

M = getadjacencymatrix(modelObj,'flat') returns the adjacency
matrix to M and defines the adjacency matrix for only modelObj. M is the
adjacency matrix for the reactions and species contained by modelObj.

[M, Headings] = getadjacencymatrix(modelObj) returns the adjacency
matrix to M and the row and column headings to Headings. Headings
is defined by listing all Name property values of species contained
by modelObj and all Name property values of reactions contained by
modelObj.

[M, Headings, Mask] = getadjacencymatrix(modelObj) returns an
array of 1s and 0s to Mask, where a 1 represents a species object and
a 0 represents a reaction object.

Examples 1 Read in a model using sbmlimport.

modelObj = sbmlimport('lotka.xml');

2 Get the adjacency matrix for the modelObj.

[M, Headings] = getadjacencymatrix(modelObj)

See Also getstoichmatrix

4-76

getconfigset (model)

Purpose Get configuration set object from model object

Syntax configsetObj = getconfigset(modelObj, 'NameValue')
configsetObj = getconfigset(modelObj)
configsetObj = getconfigset(modelObj,'active')

Arguments
modelObj Model object. Enter a variable name for a model

object.
NameValue Name of the configset object.
configsetObj Object holding the simulation-specific information.

Description configsetObj = getconfigset(modelObj, 'NameValue') returns the
configuration set attached to modelObj that is named NameValue, to
configsetObj.

configsetObj = getconfigset(modelObj) returns a vector of all attached
configuration sets, to configsetObj.

configsetObj = getconfigset(modelObj,'active') retrieves the active
configuration set.

A configuration set object stores simulation-specific information. A
SimBiology model can contain multiple configsets with one being
active at any given time. The active configuration set contains the
settings that are used during the simulation.

Use the setactiveconfigset function to define the active configset.
modelObj always contains at least one configset object with the name
configured to 'default'. Additional configset objects can be added
to modelObj with the method addconfigset.

Examples 1 Retrieve the default configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

4-77

getconfigset (model)

Configuration Settings - default (active)
SolverType: ode15s
StopTime: 10.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

RuntimeOptions:
StatesToLog: all

CompileOptions:
UnitConversion: true
DimensionalAnalysis: true

2 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa')
get(configsetObj)

Active: 1
CompileOptions: [1x1 SimBiology.CompileOptions]

Name: 'default'
Notes: ''

RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.SSASolverOptions]

SolverType: 'ssa'
StopTime: 10

StopTimeType: 'simulationTime'
TimeUnits: 'second'

Type: 'configset'

See Also addconfigset, removeconfigset, setactiveconfigset

4-78

getdata (SimData)

Purpose Get data from SimData object array

Syntax [t, x, names] = getdata(simDataObj)
[Out] = getdata(simDataObj, 'FormatValue')

Arguments Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows

and columns of x respectively.
names An m-by-1 cell array of names.
Metadata When used with the 'nummetadata' input argument,

Metadata contains a cell array of metadata structures.
The elements of Metadata label the columns of x.

Out Data returned in the format specified in
'FormatValue', shown in “Input Arguments” on page
4-79. Depending on the specified 'FormatValue', Out
contains one of the following:

• Structure array

• SimData object

• Time series object

• Combined time series object from an array of
SimData objects

Input Arguments

simDataObj SimData object. Enter a variable name for a SimData
object.

FormatValue Choose a format from the following table.

4-79

getdata (SimData)

FormatValue Description

'num' Specifies the format that lets you
return data in numeric arrays.
This is the default when getdata
is called with multiple output
arguments.

'nummetadata' Specifies the format that lets you
return a cell array of metadata
structures in metadata instead of
names. The elements of metadata
label the columns of x.

'numqualnames' Specifies the format that lets you
return qualified names in names
to resolve ambiguities.

'struct' Specifies the format that lets you
return a structure array holding
both data and metadata. This is
the default when you use a single
output argument.

'simdata' Specifies the format that lets you
return data in a new SimData
object. This format is more useful
for SimData methods other than
getdata.

4-80

getdata (SimData)

FormatValue Description

'ts' Specifies the format that lets you
return data in time series objects,
creating an individual time series
for each state or column and
SimData object in simDataObj.

'tslumped' Specifies the format that lets
you return data in time series
objects, combining data from each
SimData object into a single time
series.

Description [t, x, names] = getdata(simDataObj) gets simulation time and state
data from the SimData object simDataObj. When simDataObj contains
more than one element, the outputs t, x, names are cell arrays
in which each cell contains data for the corresponding element of
simDataObj.

[Out] = getdata(simDataObj, 'FormatValue') returns the data in the
specified format. Valid formats are listed in “Input Arguments” on page
4-79.

Examples Simulating and Retrieving Data

1 The project file, radiodecay.sbproj, contains a model stored in
a variable called m1. Load m1 into the MATLAB workspace and
simulate the model.

sbioloadproject('radiodecay');
simDataObj = sbiosimulate(m1);

2 Get all the simulation data from the SimData object.

[t x names] = getdata(simDataObj);

4-81

getdata (SimData)

Retrieving Data for Ensemble Runs

1 The project file, radiodecay.sbproj, contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay');

2 Change the solver to use during the simulation and perform an
ensemble run.

csObj = getconfigset(m1);
set(csObj, 'SolverType', 'ssa');
simDataObj = sbioensemblerun(m1, 10);

3 Get all the simulation data from the SimData object.

tsObjs = getdata(simDataObj(1:5), 'ts');

See Also display, get, resample, selectselectbyname, setactiveconfigset

MATLAB function struct

4-82

getparameters (kineticlaw)

Purpose Get specific parameters in kinetic law object

Syntax parameterObj = getparameters(kineticlawObj)
parameterObj = getparameters(kineticlawObj,

'ParameterVariablesValue')

Arguments
kineticlawObj Retrieve parameters used by the

kinetic law object.
ParameterVariablesValue Retrieve parameters used by the

kinetic law object corresponding
to the specified parameter in the
ParameterVariables property of
the kinetic law object.

Description parameterObj = getparameters(kineticlawObj) returns the parameters
used by the kinetic law object kineticlawObj to parameterObj.

parameterObj = getparameters(kineticlawObj,
'ParameterVariablesValue') returns the parameter in the
ParameterVariableNames property that corresponds to the parameter
specified in the ParameterVariables property of kineticlawObj,
to parameterObj. ParameterVariablesValue is the name of the
parameter as it appears in the ParameterVariables property of
kineticlawObj. ParameterVariablesValue can be a cell array of
strings.

If you change the name of a parameter, you must configure all
applicable elements such as rules that use the parameter, any
user-specified ReactionRate, or the kinetic law object property
ParameterVariableNames. Use the method setparameter to configure
ParameterVariableNames.

Examples Create amodel, add a reaction, and assign the ParameterVariableNames
for the reaction rate equation.

4-83

getparameters (kineticlaw)

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Add two parameter objects.

parameterObj1 = addparameter(kineticlawObj,'Va');
parameterObj2 = addparameter(kineticlawObj,'Ka');

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

5 To retrieve a parameter variable:

parameterObj3 = getparameters(kineticlawObj, 'Vm')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 Va 1

parameterObj4 = getparameters (kineticlawObj, 'Km')

See Also addparameter, getspecies, setparameter

4-84

getsensmatrix (SimData)

Purpose Get 3-D sensitivity matrix from SimData array

Syntax [T, R, Outputs, InputFactors] = getsensmatrix(simDataObj)
[T, R, Outputs, InputFactors] = getsensmatrix(simDataObj,

OutputNames,InputFactorNames)

Arguments
T T is an m-by-1 array specifying time points for the

sensitivity data in R.
R R is an m-by-n-by-p array of sensitivity data with

times, outputs, and input factors corresponding
to its first, second, and third dimensions
respectively. R(:,i,j) is the time course for the
sensitivity of state Outputs{i} to the input factor
InputFactors{j}.

Outputs Name of the output factors, where output factors
are the names of the states for which you want to
calculate sensitivity.

InputFactors Name of the input factors, where input factors are
the names of the states with respect to which you
want to calculate sensitivity.

Description [T, R, Outputs, InputFactors] = getsensmatrix(simDataObj) gets
time and sensitivity data from the SimData object (simDataObj).

When simDataObj contains more than one element, the output
arguments are cell arrays in which each cell contains data for the
corresponding element of simDataObj.

The getsensmatrix method can only return sensitivity data that is
contained in the SimData object. The sensitivity data that is logged
in a SimData object is set at simulation time by the configuration
set used during the simulation. This is typically the model’s active
configuration set. See “Sensitivity Analysis” in the SimBiology User’s
Guide documentation for an explanation of how to set up a sensitivity
calculation using the configuration set. Note in particular that the

4-85

getsensmatrix (SimData)

sensitivity data R returned by getsensmatrix may be normalized, as
specified at simulation time.

[T, R, Outputs, InputFactors] =
getsensmatrix(simDataObj,OutputNames,InputFactorNames) gets
sensitivity data for the outputs specified by OutputNames and the input
factors specified by InputFactorNames.

OutputNames and InputFactorNames can both be any one of the
following:

• Empty array

• Single name

• Cell array of names

Pass an empty array for OutputNames or InputFactorNames to ask
for sensitivity data on all output factors or input factors contained in
simDataObj, respectively. You can also use qualified names such as
'CompartmentName.SpeciesName' or 'ReactionName.ParameterName'
to resolve ambiguities.

Examples This example shows how to retrieve sensitivity data from a SimData
object.

1 Set up the simulation:

a Import the radio decay model from SimBiology demos.

modelObj = sbmlimport('radiodecay');

b Retrieve the configset object from the modelObj.

configsetObj = getconfigset(modelObj);

c Specify the species for which you want sensitivity data in the
SpeciesOutputs property. All model species are selected in this
example.

4-86

getsensmatrix (SimData)

Use the sbioselect function to retrieve the species objects from
the model.

set (configsetObj.SensitivityAnalysisOptions, 'SpeciesOutputs', ...

sbioselect(modelObj, 'Type', 'species'));

d Specify parameters and species with respect to which you want to
calculate the sensitivities in the ParameterInputFactors and the
SpeciesInputFactors properties respectively.

set(configsetObj.SensitivityAnalysisOptions,'ParameterInputFactors', ...

sbioselect(modelObj, 'Type', 'parameter', 'Name', 'c'));

set(configsetObj.SensitivityAnalysisOptions,'SpeciesInputFactors', ...

sbioselect(modelObj,'Type', 'species', 'Name', 'z'));

e Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true)
get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

1

f Simulate and return the results in a SimData object.

simDataObj = sbiosimulate(modelObj)

2 Extract and plot sensitivity data from the SimData object.

a Use getsensmatrix to retrieve sensitivity data.

[t R outs ifacs] = getsensmatrix(simDataObj);

b Plot sensitivity values.

plot(t, R(:,:,2));
legend(outs);

4-87

getsensmatrix (SimData)

title(['Sensitivities of species relative to ' ifacs{2}]);

See Also display, get, getdata, resample, selectbyname

MATLAB function struct

4-88

getspecies (kineticlaw)

Purpose Get specific species in kinetic law object

Syntax speciesObj = getspecies(kineticlawObj)
speciesObj = getspecies(kineticlawObj,

'SpeciesVariablesValue')

Arguments
kineticlawObj Retrieve species used by the

kinetic law object.
SpeciesVariablesValue Retrieve species used by the

kinetic law object corresponding
to the specified species in the
SpeciesVariables property of the
kinetic law object.

Description speciesObj = getspecies(kineticlawObj) returns the species used by
the kinetic law object kineticlawObj to speciesObj.

speciesObj = getspecies(kineticlawObj, 'SpeciesVariablesValue')
returns the species in the SpeciesVariableNames property to
speciesObj.

SpeciesVariablesValue is the name of the species as it
appears in the SpeciesVariables property of kineticlawObj.
SpeciesVariablesValue can be a cell array of strings.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the name of a species, the reaction
updates to use the new name. You must, however, configure all other
applicable elements such as rules that use the species, and the kinetic
law object SpeciesVariableNames. Use the method setspecies to
configure SpeciesVariableNames.

Examples Create a model, add a reaction, and then assign the
SpeciesVariableNames for the reaction rate equation.

1 Create a model object, and then add a reaction object.

4-89

getspecies (kineticlaw)

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that should to be set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Retrieve the species variable using getspecies.

speciesObj = getspecies (kineticlawObj, 'S')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
1 unnamed a 0

See Also addspecies, getparameters, setparameter, setspecies

4-90

getstoichmatrix (model)

Purpose Get stoichiometry matrix from model object

Syntax M = getstoichmatrix(modelObj)
M = getstoichmatrix(modelObj, 'flat')
[M,objSpecies] = getstoichmatrix(modelObj)
[M,objSpecies,objReactions] = getstoichmatrix(modelObj)

Arguments
M Adjacency matrix for modelObj.
modelObj Specify the model object modelObj.
'flat' Return the stoichiometry matrix for

only the specified modelObj, not for
objects contained in the Obj.

objSpecies Return the list of modelObj
species by Name property of the
species. If the species are in
multiple compartments, species
names are qualified with the
compartment name in the form
compartmentName.speciesName.
For example, nucleus.DNA,
cytoplasm.mRNA.

objReactions Return the list of modelObj reactions
by the Name property of reactions.

Description getstoichmatrix returns a stoichiometry matrix for a model object.

M = getstoichmatrix(modelObj) returns a stoichiometry matrix for a
SimBiology model object (modelObj) to M.

A stoichiometry matrix is defined by listing all reactions contained by
modelObj column-wise and all species contained by modelObj row-wise
in a matrix. The species of the reaction are represented in the matrix
with the stoichiometric value at the location of [row of species, column

4-91

getstoichmatrix (model)

of reaction]. Reactants have negative values. Products have positive
values. All other locations in the matrix are 0.

For example, if modelObj is a model object with two reactions with
names R1 and R2 and Reaction values of 2 A + B -> 3 C and B + 3 D
-> 4 A, the stoichiometry matrix would be defined as:

A B C D
R1 -2 -1 3 0
R2 4 -1 0 -3

M = getstoichmatrix(modelObj, 'flat') defines the stoichiometry
matrix for only modelObj. M is the stoichiometry matrix for the reactions
and species contained by modelObj.

[M,objSpecies] = getstoichmatrix(modelObj) returns the
stoichiometry matrix to M and the species to objSpecies. objSpecies is
defined by listing all Name property values of species contained by Obj.
In the above example, objSpecies would be {'A', 'B', 'C', 'D'};.

[M,objSpecies,objReactions] = getstoichmatrix(modelObj) returns
the stoichiometry matrix to M and the reactions to objReactions.
objReactions is defined by listing all Name property values of reactions
contained by modelObj. In the above example, objReactions would be
{'R1', 'R2'}.

Examples 1 Read in a model using sbmlimport.

modelObj = sbmlimport('lotka.xml');

2 Get the stoichiometry matrix for the modelObj.

[M,objSpecies,objReactions] = getstoichmatrix(modelObj)

See Also getadjacencymatrix

4-92

getvariant (model)

Purpose Get variant from model

Syntax variantObj = getvariant(modelObj)
variantObj = getvariant(modelObj, 'NameValue')

Arguments
variantObj Variant object returned by the getvariant

method.
modelObj Model object from which to get the variant.
'NameValue' Name of the variant to get from the model

object modelObj.

Description variantObj = getvariant(modelObj) returns SimBiology variant objects
contained by the SimBiology model object modelObj to variantObj.

A SimBiology variant object stores alternate values for properties on
a SimBiology model. For more information on variants, see Variant
object.

variantObj = getvariant(modelObj, 'NameValue') returns the
SimBiology variant object with the name NameValue, contained by the
SimBiology model object, modelObj.

View properties for a variant object with the get command, and modify
properties for a variant object with the set command.

Note Remember to use the addcontent method instead of using the
set method on the Content property, because the set method replaces
the data in the Content property whereas addcontent appends the
data.

To copy a variant object to another model, use copyobj. To remove a
variant object from a SimBiology model, use the delete method.

4-93

getvariant (model)

Examples 1 Create a model containing several variants.

modelObj = sbiomodel('mymodel');
variantObj1 = addvariant(modelObj, 'v1');
variantObj2 = addvariant(modelObj, 'v2');

2 Get all variants in the model.

vObjs = getvariant(modelObj)

SimBiology Variant Array

Index: Name: Active:
1 v1 false
2 v2 false

3 Get the variant object named 'v2' from the model.

vObjv2 = getvariant(modelObj, 'v2');

See Also addvariant, removevariant

4-94

KineticLaw object

Purpose Kinetic law information for reaction

Description The kinetic law object holds information about the abstract kinetic law
applied to a reaction and provides a template for the reaction rate. In
the model, the SimBiology software uses the information you provide
in a fully defined kinetic law object to determine the ReactionRate
property in the reaction object.

When you first create a kinetic law object, you must specify the name
of the abstract kinetic law to use. The SimBiology software fills in the
KineticLawName property and the Expression property in the kinetic
law object with the name of the abstract kinetic law you specified and
the mathematical expression respectively. The software also fills in the
ParameterVariables property and the SpeciesVariables property
of the kinetic law object with the values found in the corresponding
properties of the abstract kinetic law object.

To obtain the reaction rate, you must fully define the kinetic law object:

1 In the ParameterVariableNames property, specify the parameters
from the model that you want to substitute in the expression
(Expression property).

2 In the SpeciesVariableNames property, specify the species from the
model that you want to substitute in the expression.

The SimBiology software substitutes in the expression, the names
of parameter variables and species variables in the order specified
in the ParameterVariables and SpeciesVariables properties
respectively.

The software then shows the substituted expression as the reaction
rate in the ReactionRate property of the reaction object. If the
kinetic law object is not fully defined, the ReactionRate property
remains ' ' (empty).

For links to kinetic law object property reference pages, see “Property
Summary” on page 4-100.

4-95

KineticLaw object

Properties define the characteristics of an object. Use the get and set
commands to list object properties and change their values at the
command line. You can interactively change object properties in the
SimBiology desktop.

For an explanation of how relevant properties relate to one another,
see “Command Line” on page 4-96.

The following sections use a kinetic law example to show how you can
fully define your kinetic law object to obtain the reaction rate in the
SimBiology desktop and at the command line.

The Henri-Michaelis-Menten kinetic law is expressed as follows:

V S K Smm * /()+

In the SimBiology software Henri-Michaelis-Menten is a
built-in abstract kinetic law, where Vm and Km are defined in the
ParameterVariables property of the abstract kinetic law object, and
S is defined in the SpeciesVariables property of the abstract kinetic
law object.

SimBiology Desktop

To fully define kinetic law, in the SimBiology desktop, define the names
of the species variables and parameter variables that participate in the
reaction rate in the Project Settings-Reactions pane on the Kinetic
Law tab. To add a reaction and set the reaction rate in the SimBiology
desktop, see “Adding Reactions to a Model” in the SimBiology Getting
Started Guide documentation.

Command Line

To fully define the kinetic law object at the command line, define
the names of the parameters in the ParameterVariableNames
property of the kinetic law object, and define the species names in the
SpeciesVariableNames property of the kinetic law object. For example,
to apply the Henri-Michaelis-Menten abstract kinetic law to a reaction

A -> B
where Vm = Va, Km = Ka

4-96

KineticLaw object

and S = A

Define Va and Ka in the ParameterVariableNames property to
substitute the variables that are in the ParameterVariables property
(Vm and Km). Define A in the SpeciesVariableName property to be
used to substitute the species variable in the SpeciesVariables
property (S). Specify the order of the model parameters to be used for
substitution in the same order that the parameter variables are listed
in the ParameterVariables property. Similarly, specify species order if
more than one species variable is represented.

% Find the order of the parameter variables
% in the kinetic law expression.

get(kineticlawObj, 'ParameterVariables')

ans =

'Vm' 'Km'

% Find the species variable in the
% kinetic law expression

get(kineticlawObj, 'SpeciesVariables')
ans =

'S'

% Specify the parameters and species variables
% to be used in the substitution.
% Remember to specify order, for example Vm = Va
% Vm is listed first in 'ParameterVariables',
% therefore list Va first in 'ParameterVariableNames'.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});
set(kineticlawObj,'SpeciesVariableNames', {'A'});

4-97

KineticLaw object

The rate equation is assigned in the reaction object as follows:

Va*A/(Ka + A)

For a detailed procedure, see “Examples” on page 4-101.

The following table summarizes the relationships between the
properties in the abstract kinetic law object and the kinetic law object
in the context of the above example.

Property Property Purpose Abstract
Kinetic Law
Object

Kinetic Law Object

Name (abstract kinetic
law object)
KineticLawName (kinetic
law object)

Name of abstract
kinetic law applied
to a reaction. For
example:

Henri-Michaelis
-Menten

Read-only for
built-in abstract
kinetic law.
User-determined
for user-defined
abstract kinetic
law.

Read-only

Expression Mathematical
expression used
to determine the
reaction rate
equation. For
example:

V S K Smm * /()+

Read-only for
built-in abstract
kinetic law.
User-determined
for user-defined
abstract kinetic
law.

Read-only; depends
on abstract kinetic
law applied to
reaction.

4-98

KineticLaw object

Property Property Purpose Abstract
Kinetic Law
Object

Kinetic Law Object

ParameterVariables Variables in
Expression that
are parameters. For
example:

Vm and Km

Read-only for
built-in abstract
kinetic law.
User-determined
for user-defined
abstract kinetic
law.

Read-only; depends
on abstract kinetic
law applied to
reaction.

SpeciesVariables Variables in
Expression that
are species. For
example:

S

Read-only for
built-in abstract
kinetic law.
User-determined
for user-defined
abstract kinetic
law.

Read-only; depends
on abstract kinetic
law applied to
reaction.

ParameterVariableNames Variables in
ReactionRate that
are parameters. For
example:

Va and Ka

Not applicable Define these
variables
corresponding to
ParameterVariables.

SpeciesVariablesNames Variables in
ReactionRate that
are species. For
example:

A

Not applicable Define these
variables
corresponding to
SpeciesVariables.

Constructor
Summary

addkineticlaw (reaction) Create kinetic law object and add
to reaction object

4-99

KineticLaw object

Method
Summary

addparameter (model, kineticlaw) Create parameter object and add
to model or kinetic law object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getparameters (kineticlaw) Get specific parameters in kinetic

law object
getspecies (kineticlaw) Get specific species in kinetic law

object
set (any object) Set object properties
setparameter (kineticlaw) Specify specific parameters in

kinetic law object
setspecies (kineticlaw) Specify species in kinetic law

object

Property
Summary

Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
KineticLawName Name of kinetic law applied to

reaction
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects

4-100

KineticLaw object

ParameterVariableNames Cell array of reaction rate
parameters

ParameterVariables Parameters in abstract kinetic
law

Parent Indicate parent object
SpeciesVariableNames Cell array of species used in

reaction rate equation
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

Examples This example shows how to define the reaction rate for a reaction.

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'A -> B');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Query the parameters and species variables defined in the kinetic
law.

get(kineticlawObj, 'ParameterVariables')

ans =

'Vm' 'Km'

4-101

KineticLaw object

get(kineticlawObj, 'SpeciesVariables')
ans =

'S'

4 Define Va and Ka as ParameterVariableNames, which correspond
to the ParameterVariables Vm and Km. To set these variables,
first create the parameter variables as parameter objects
(parameterObj1, parameterObj2) with the names Va and Ka, and
then add them to kineticlawObj. The species object with Name A is
created when reactionObj is created and need not be redefined.

parameterObj1 = addparameter(kineticlawObj, 'Va');
parameterObj2 = addparameter(kineticlawObj, 'Ka');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});
set(kineticlawObj,'SpeciesVariableNames', {'A'});

6 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Va*A/(Ka+A)

See Also AbstractKineticLaw object, Configset object, Model object,
Parameter object, Reaction object, Root object, Rule object,
Species object

SimBiology property Expression

4-102

Model object

Purpose Model and component information

Description The SimBiology model object represents a model, which is a collection
of interrelated reactions and rules that transform, transport, and bind
species. The model includes model components such as compartments,
reactions, parameters, rules, and events. Each of the components is
represented as a property of the model object. A model object also has a
default configuration set object to define simulation settings. You can
also add more configuration set objects to a model object.

See “Property Summary” on page 4-105 for links to model property
reference pages.

Properties define the characteristics of an object. Use the get and set
commands to list object properties and change their values at the
command line. You can graphically change object properties in the
SimBiology desktop.

You can retrieve top-level SimBiology model objects from the SimBiology
root object. A SimBiology model object has its Parent property set to
the SimBiology root object.

Constructor
Summary

sbiomodel Construct model object

Method
Summary

addcompartment (model,
compartment)

Create compartment object

addconfigset (model) Create configuration set object
and add to model object

addevent (model) Add event object to model object
addparameter (model, kineticlaw) Create parameter object and add

to model or kinetic law object
addreaction (model) Create reaction object and add to

model object

4-103

Model object

addrule (model) Create rule object and add to
model object

addvariant (model) Add variant to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getadjacencymatrix (model) Get adjacency matrix from model

object
getconfigset (model) Get configuration set object from

model object
getstoichmatrix (model) Get stoichiometry matrix from

model object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from

model
removevariant (model) Remove variant from model
reorder (model, compartment) Reorder component lists
set (any object) Set object properties
setactiveconfigset (model) Set active configuration set for

model object
verify (model, variant) Validate and verify SimBiology

model

4-104

Model object

Property
Summary

Annotation Store link to URL or file
Compartments Array of compartments in model

or compartment
Events Contain all event objects
Models Contain all model objects
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects
Parent Indicate parent object
Reactions Array of reaction objects
Rules Array of rules in model object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Parameter object, Reaction object, Root object, Rule
object, Species object

4-105

Parameter object

Purpose Parameter and scope information

Description The parameter object represents a parameter, which is a quantity that
can change or can be constant. SimBiology parameters are generally
used to define rate constants. You can add parameter objects to a
model object or a kinetic law object. The scope of a parameter depends
on where you add the parameter object: If you add the parameter
object to a model object, the parameter is available to all reactions
in the model and the Parent property of the parameter object is
SimBiology.Model. If you add the parameter object to a kinetic law
object, the parameter is available only to the reaction for which you are
using the kinetic law object and the Parent property of the parameter
object is SimBiology.KineticLaw.

See “Property Summary” on page 4-107 for links to parameter object
property reference pages.

Properties define the characteristics of an object. Use the get and set
commands to list object properties and change their values at the
command line. You can graphically change object properties in the
graphical user interface.

Constructor
Summary

addparameter (model, kineticlaw) Create parameter object and add
to model or kinetic law object

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties

4-106

Parameter object

rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

Property
Summary

Annotation Store link to URL or file
ConstantValue Specify variable or constant

parameter value
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object
Value Assign value to parameter object
ValueUnits Parameter value units

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Reaction object, Root object, Rule object,
Species object

4-107

Reaction object

Purpose Options for model reactions

Description The reaction object represents a reaction, which describes a
transformation, transport, or binding process that changes one or more
species. Typically, the change is the amount of a species. For example:

Creatine + ATP <-> ADP + phophocreatine

glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O

Spaces are required before and after species names and stoichiometric
values.

See “Property Summary” on page 4-109 for links to reaction object
property reference pages.

Properties define the characteristics of an object. Use the get and
set commands to list object properties and change their values at the
command line. You can graphically change object properties in the
graphical user interface.

Constructor
Summary

addreaction (model) Create reaction object and add to
model object

Method
Summary

addkineticlaw (reaction) Create kinetic law object and add
to reaction object

addproduct (reaction) Add product species object to
reaction object

addreactant (reaction) Add species object as reactant to
reaction object

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object

4-108

Reaction object

display (any object) Display summary of SimBiology
object

get (any object) Get object properties
rmproduct (reaction) Remove species object from

reaction object products
rmreactant (reaction) Remove species object from

reaction object reactants
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
KineticLaw Show kinetic law used for

ReactionRate

Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction

object
Reversible Specify whether reaction is

reversible or irreversible
Stoichiometry Species coefficients in reaction

4-109

Reaction object

Tag Specify label for SimBiology
object

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Parameter object, Root object, Rule
object, Species object

4-110

removeconfigset (model)

Purpose Remove configuration set from model

Syntax removeconfigset(modelObj, 'NameValue')
removeconfigset(modelObj, configsetObj)

Arguments
modelObj Model object from which to remove the

configuration set.
NameValue Name of the configuration set.
configsetObj Configuration set object that is to be

removed from the model object.

Description removeconfigset(modelObj, 'NameValue') removes the configset object
with the name NameValue from the SimBiology model object modelObj.
A configuration set object stores simulation-specific information. A
SimBiology model can contain multiple configuration sets with one
being active at any given time. The active configuration set contains the
settings that are used during the simulation. modelObj always contains
at least one configuration set object with name configured to 'default'.
You cannot remove the default configuration set from modelObj. If the
active configuration set is removed from modelObj, then the default
configuration set will be made active.

removeconfigset(modelObj, configsetObj) removes the configuration
set object, configsetObj, from the SimBiology model, modelObj. The
configuration set is not deleted; if you want to delete configsetObj, use
the delete method.

If however, there is no MATLAB variable holding the configset,
removeconfigset(modelObj, 'NameValue') removes the configset
from the model and deletes it.

Examples 1 Create a model object by importing the file oscillator.xml and
add a configset.

modelObj = sbmlimport('oscillator');

4-111

removeconfigset (model)

configsetObj = addconfigset(modelObj, 'myset');

2 Remove the configset from modelObj by name or alternatively by
indexing.

% Remove the configset with name 'myset'.
removeconfigset(modelObj, 'myset');

% Get all configset objects and remove the second.
configsetObj = getconfigset(modelObj);
removeconfigset(modelObj, configsetObj(2));

See Also addconfigset, getconfigset, setactiveconfigset

4-112

removevariant (model)

Purpose Remove variant from model

Syntax variantObj = removevariant(modelObj, 'NameValue')
variantObj = removevariant(modelObj, variantObj)

Arguments
modelObj Specify the model object from which you want

to remove the variant.
variantObj Specify the variant object to return from the

model object.

Description variantObj = removevariant(modelObj, 'NameValue') removes a
SimBiology variant object with the name NameValue from the model
object modelObj and returns the variant object to variantObj. The
variant object Parent property is assigned [] (empty).

A SimBiology variant object stores alternate values for properties on
a SimBiology model. For more information on variants, see Variant
object.

variantObj = removevariant(modelObj, variantObj) removes a
SimBiology variant object (variantObj) and returns the variant object
variantObj.

To view the variants stored on a model object, use the getvariant
method. To copy a variant object to another model, use copyobj. To add
a variant object to a SimBiology model, use the addvariant method.

Examples 1 Create a model containing several variants.

modelObj = sbiomodel('mymodel');
variantObj1 = addvariant(modelObj, 'v1');
variantObj2 = addvariant(modelObj, 'v2');
variantObj3 = addvariant(modelObj, 'v3');

2 Remove a variant object using its name.

4-113

removevariant (model)

removevariant(modelObj, 'v1');

3 Remove a variant object using its index number.

a Get the index number of the variant in the model.

vObjs = getvariant(modelObj)

SimBiology Variant Array

Index: Name: Active:
1 v2 false
2 v3 false

b Remove the variant object.

removevariant(modelObj, vObjs(2));

See Also addvariant, getvariant

4-114

rename (compartment, parameter, species)

Purpose Rename object and update expressions

Syntax rename(Obj, 'NewNameValue')

Arguments
Obj Compartment, parameter, or species object.
'NewNameValue' Specify the new name.

Description rename(Obj, 'NewNameValue'), changes the Name property of the object,
Obj to NewNameValue and updates any expressions in the model (such
as Rule or ReactionRate) to use the new name.

If the new name is already being used by another model component, the
new name will be qualified to ensure that it is unique. For example if
you change a species named A to K, and a parameter with the name K
exists, the species will be qualified as CompartmentName.K to indicate
that the reference is to the species. If you are referring to an object by
it’s qualified name, for example CompartmentName.A and you change
the species name, the reference will contain the qualified name in it’s
updated form, for example, CompartmentName.K

When you want to change the name of a compartment, parameter, or
species object, use this method instead of set. The set method only
changes the Name property of the object, except for species objects where
the species object’s Name property and any reaction strings which refer
to species are updated to use the new name.

Examples 1 Create a model object that contains a species A in a rule.

m = sbiomodel('cell');
s = addspecies(m, 'A');
r = addrule(m, 'A = 4');

2 Rename the species to Y

rename(s, 'Y');

4-115

rename (compartment, parameter, species)

3 See that the rule expression is now updated.

r

SimBiology Rule Array

Index: RuleType: Rule:
1 initialAssignment Y = 4

See Also set

4-116

reorder (model, compartment)

Purpose Reorder component lists

Syntax modelObj = reorder(Obj, NewOrder)

Arguments
Obj Model object or compartment. Enter a variable

name.
NewOrder Object vector in the new order. If Obj is a

model object, NewOrder can be an array of
compartments, events, parameters, reactions
or rules objects. If Obj is a compartment object,
NewOrder must be an array of species objects.

Description modelObj = reorder(Obj, NewOrder) reorders the component vector
NewOrder, to be in the order specified.

You can use this method to reorder any of the component vectors, such
as events, parameters, rules, and species. The vector of components,
when reordered, must contain the same objects as the original list of
objects but they can be in a different order.

Examples 1 Import a model.

modelObj = sbmlimport('lotka');

2 Display the order of the reactions in the model.

get(modelObj.Reactions);

SimBiology Reaction Array

Index: Reaction:
1 x + y1 -> 2 y1 + x
2 y1 + y2 -> 2 y2
3 y2 -> z

4-117

reorder (model, compartment)

3 Reverse the order of the reactions in the model.

reorder(modelObj, modelObj.Reactions([3 2 1]))

4-118

resample (SimData)

Purpose Resample SimData object array onto new time vector

Syntax newSimDataObj = resample(simDataObj)
newSimDataObj = resample(simDataObj, timevector)
newSimDataObj = resample(simDataObj, timevector, method)

Arguments
newSimDataObj Resampled SimData object array.
simDataObj SimData object array that you want to resample.
timevector Real numeric array of time points onto which you

want to resample the data.
method Method to use during resampling. Can be one of

the following:

• 'interp1q' — Uses the MATLAB function
interp1q.

• — To use the MATLAB function interp1,
specify one of the following methods:

- 'nearest'

- 'linear'

- 'spline'

- 'pchip'

- 'cubic'

- 'v5cubic'

• 'zoh' — specifies zero-order hold.

Description newSimDataObj = resample(simDataObj) resamples the simulation data
contained in every element of the SimData object array simDataObj onto
a common time vector, producing a new SimData array newSimDataObj.
By default, the common time vector is taken from the element of
simDataObj with the earliest stopping time.

4-119

resample (SimData)

newSimDataObj = resample(simDataObj, timevector) resamples
the SimData array simDataObj onto the time vector timevector.
timevector must either be a real numeric array or the empty array
[]. If you use an empty array, resample uses the default time vector
as described above.

newSimDataObj = resample(simDataObj, timevector, method) uses the
interpolation method specified in method.

If the specified timevector includes time points outside the time
interval encompassed by one or more SimData objects in simDataObj,
the resampling will involve extrapolation and you will see a
warning. See the help for the MATLAB function corresponding to
the interpolation method in use for information on how the function
performs the extrapolation.

Examples Simulating and Resampling Data

1 The project file, radiodecay.sbproj contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay');
simDataObj = sbiosimulate(m1);

2 Resample the data.

newSimDataObj = resample(simDataObj, [1:5], 'linear');

Resampling Data for Ensemble Runs

1 The project file, radiodecay.sbproj, contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject('radiodecay');

2 Change the solver to use during the simulation and perform an
ensemble run.

csObj = getconfigset(m1);

4-120

resample (SimData)

set(csObj, 'SolverType', 'ssa');
simDataObj = sbioensemblerun(m1, 10);

3 Interpolate the time steps.

newSimDataObj = resample(simDataObj, [1:10], 'linear');

4 View the time steps in the SimData object arrays.

newSimDataObj(1).Time
simDataObj(1).Time

See Also sbioensemblerun, sbioensemblestats, sbiosimulate, SimData
object

MATLAB functions interp1, interp1q

4-121

reset (root)

Purpose Delete all model objects from root object

Syntax reset(sbioroot)

Description reset(sbioroot) deletes all SimBiology model objects contained by
the SimBiology root. The SimBiology root object is returned with the
method sbioroot. This call is equivalent to sbioreset.

The SimBiology root object contains a list of SimBiology model objects,
available units, unit prefixes, and abstract kinetic law objects. A
SimBiology model object has its Parent property set to the SimBiology
root object.

To add an abstract kinetic law to the SimBiology root user-defined
library, use the sbioaddtolibrary function. To add a unit
to the SimBiology root user-defined library, use the function
sbioregisterunit. To add a unit prefix to the SimBiology root
user-defined library, use the function sbioregisterunitprefix.

Examples 1 Query sbioroot, which has two model objects.

sbioroot

SimBiology Root Contains:

Models: 2
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 1
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

2 Call reset.

sbioroot

SimBiology Root Contains:

4-122

reset (root)

Models: 0
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 1
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

See Also sbioaddtolibrary, sbiohelp, sbioregisterunit,
sbioregisterunitprefix, sbioreset, sbioroot

4-123

rmcontent (variant)

Purpose Remove contents from variant object

Syntax rmcontent(variantObj, contents)
rmcontent(variantObj, idx)

Arguments

variantObj Specify the variant object from which you want to remove data. The
Content property is modified to remove the new data.

contents Specify the data you want to remove from a variant object. Contents
can either be a cell array or an array of cell arrays. A valid cell
array should have the form {'Type', 'Name', 'PropertyName',
PropertyValue}, where PropertyValue is the new value to be
applied for the PropertyName. Valid Type, Name, and PropertyName
values are as follows.

’Type’ ’Name’ ’PropertyName’

'species' Name of the species. If there are
multiple species in the model with
the same name, specify the species as
[compartmentName.speciesName],
where compartmentName is the name
of the compartment containing the
species.

'InitialAmount'

'parameter' If the parameter scope is a
model, specify the parameter
name. If the parameter
scope is a kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'

idx Specify the ContentIndex or indices of the data to be removed. To
display the ContentIndex, enter the object name and press Enter.

4-124

rmcontent (variant)

Description rmcontent(variantObj, contents) removes the data stored in the
variable contents from the variant object (variantObj).

rmcontent(variantObj, idx) removes the data specified by the indices
idx (also called ContentIndex) from the Content property of the
variant object.

Examples 1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
A = addspecies(compObj, 'A');
B = addspecies(compObj, 'B');
C = addspecies(compObj, 'C');

2 Add a variant object that varies the species’ InitialAmount property.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...
{'species', 'B', 'InitialAmount', 10}, ...
{ 'species', 'C', 'InitialAmount', 15}});% Display the variant
variantObj

SimBiology Variant - v1 (inactive)

ContentIndex: Type: Name: Property: Value:

1 species A InitialAmount 5

2 species B InitialAmount 10

3 species C InitialAmount 15

3 Use the ContentIndex number to remove a species from the Content
property of the variant object.

rmcontent(variantObj, 2);
variantObj

SimBiology Variant - v1 (inactive)

4-125

rmcontent (variant)

ContentIndex: Type: Name: Property: Value:

1 species A InitialAmount 5

2 species C InitialAmount 15

4 (Alternatively) Remove a species from the contents of the variant
object using detailed reference to the species.

rmcontent(variantObj, {'species','A', 'InitialAmount', 5});

% Display variant object

variantObj

SimBiology Variant - v1 (inactive)

ContentIndex: Type: Name: Property: Value:

1 species C InitialAmount 15

See Also addvariant, rmcontent, sbiovariant

4-126

rmproduct (reaction)

Purpose Remove species object from reaction object products

Syntax rmproduct(reactionObj, SpeciesName)
rmproduct(reactionObj, speciesObj)

Arguments
reactionObj Reaction object.
SpeciesName Name for a model object. Enter a species name

or a cell array of species names.
speciesObj Species object. Enter a species object or an

array of species objects.

Description rmproduct(reactionObj, SpeciesName), in a reaction object
(reactionObj), removes a species object with a specified name
(SpeciesName) from the property Products, removes the species name
from the property Reaction, and updates the property Stoichiometry
to exclude the species coefficient.

rmproduct(reactionObj, speciesObj) removes a species object as
described above using a MATLAB variable for a species object.

The species object is not removed from the parent model property
Species. If the species object is no longer used by any reaction, you can
use the function delete to remove it from the parent object.

If one of the species specified does not exist as a product, a warning
is returned.

Examples Example 1

This example shows how to remove a product that was previously added
to a reaction. You can remove the species object using the species name.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP -> creatine + ATP + Pi');

rmproduct(reactionObj, 'Pi')

4-127

rmproduct (reaction)

SimBiology Reaction Array

Index: Reaction:

1 Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');
reactionObj.Reaction
ans =

A -> B + C

rmproduct(reactionObj, modelObj.Species(2));
reactionObj.Reaction

ans =
A -> C

See Also rmreactant

4-128

rmreactant (reaction)

Purpose Remove species object from reaction object reactants

Syntax rmreactant(reactionObj, SpeciesName)
rmreactant(reactionObj, speciesObj)

Arguments
reactionObj Reaction object.
SpeciesName Name for a species object. Enter a species name

or a cell array of species names.
speciesObj Species object. Enter a species object or an

array of species objects.

Description rmreactant(reactionObj, SpeciesName), in a reaction object
(reactionObj), removes a species object with a specified name
(SpeciesName) from the property Reactants, removes the species name
from the property Reaction, and updates the property Stoichiometry
to exclude the species coefficient.

rmreactant(reactionObj, speciesObj) removes a species object as
described above using a MATLAB variable for a species object, or a
model index for a species object.

The species object is not removed from the parent model property
Species. If the species object is no longer used by any reaction, you can
use the method delete to remove it from the parent object.

If one of the species specified does not exist as a reactant, a warning
is returned.

Examples Example 1

This example shows how to remove a reactant that was added to a
reaction by mistake. You can remove the species object using the
species name.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP + Pi -> creatine + ATP');

4-129

rmreactant (reaction)

rmreactant(reactionObj, 'Pi')

SimBiology Reaction Array

Index: Reaction:

1 Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');

reactionObj.Reaction
ans =

A + B -> C

rmreactant(reactionObj, modelObj.Species(1));
reactionObj.Reaction

ans =
A -> C

See Also delete, rmproduct

4-130

Root object

Purpose Hold models, unit libraries, and abstract kinetic law libraries

Description The SimBiology root object contains a list of the top-level SimBiology
model objects and SimBiology libraries. The components that the
libraries contain are: all available units, unit prefixes, and available
abstract kinetic law objects. There are two types of libraries: one
contains components that are built in (BuiltinLibrary), and the other
contains components that are user defined (UserdefinedLibrary).

You can retrieve top-level SimBiology model objects from the SimBiology
root object. A SimBiology model object has its Parent property set to
the SimBiology root object.

See “Property Summary” on page 4-132 for links to root object property
reference pages.

Properties define the characteristics of an object. Use the get and set
commands to list object properties and change their values at the
command line. You can interactively change object properties in the
SimBiology desktop.

Constructor
Summary

sbioroot Return SimBiology root object

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

get (any object) Get object properties
reset (root) Delete all model objects from root

object
set (any object) Set object properties

4-131

Root object

Property
Summary

BuiltInLibrary Library of built-in components
Models Contain all model objects
Type Display top-level SimBiology

object type
UserDefinedLibrary Library of user-defined

components

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Parameter object, Reaction object, Rule
object, Species object

4-132

Rule object

Purpose Hold rule for species and parameters

Description The SimBiology rule object represents a rule, which is a mathematical
expression that modifies a species amount or a parameter value. For a
description of the types of SimBiology rules, see RuleType.

See “Property Summary” on page 4-133 for links to rule property
reference pages.

Properties define the characteristics of an object. Use the get and set
commands to list object properties and change their values at the
command line. You can graphically change object properties in the
graphical user interface.

Constructor
Summary

addrule (model) Create rule object and add to
model object

Method
Summary

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Active Indicate object in use during
simulation

Annotation Store link to URL or file
Name Specify name of object

4-133

Rule object

Notes HTML text describing SimBiology
object

Parent Indicate parent object
Rule Specify species and parameter

interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, Configset object, KineticLaw
object, Model object, Parameter object, Reaction object, Root
object, Species object

4-134

select (SimData)

Purpose Select data from SimData object

Syntax [t,x,names] = select(simDataObj, Query)
[Out] = select(simDataObj, Query, 'Format', 'FormatValue')

Arguments Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows

and columns of x respectively.
names An m-by-1 cell array of names.

Out Data returned in the format specified in
'FormatValue', shown in “Input Arguments” on page
4-135. Depending on the specified 'FormatValue',
Out contains one of the following:

• Structure array

• SimData object

• Time series object

• Combined time series object from an array of
SimData objects

Input Arguments

simDataObj SimData object array. Enter a variable name for a SimData object.

4-135

select (SimData)

Query A cell array of arguments consisting of some combination of property
name/property value pairs and/or 'Where' clauses. For a more
complete description of the query syntax, including 'Where' clauses
and their supported condition types, see sbioselect. You can use any
of the metadata fields available in the cells of the DataInfo property of
a SimData object in a query. These include 'Type', 'Name', 'Units',
'Compartment' (species only), or 'Reaction' (parameter only).

FormatValue Choose a format from the following table.

FormatValue Description

'num' Specifies the format that lets you return data in numeric
arrays. This is the default when select is called with
multiple output arguments.

'nummetadata' Specifies the format that lets you return a cell array of
metadata structures in metadata instead of names. The
elements of metadata label the columns of x.

'numqualnames' Specifies the format that lets you return qualified names in
names to resolve ambiguities.

'struct' Specifies the format that lets you return a structure array
holding both data and metadata. This is the default when
you use a single output argument.

'simdata' Specifies the format that lets you return data in a new
SimData object. This is the default format when select is
called with zero or one output argument.

'ts' Specifies the format that lets you return data in time series
objects, creating an individual time series for each state or
column and SimData object in simDataObj.

'tslumped' Specifies the format that lets you return data in time series
objects, combining data from each SimData object into a
single time series.

4-136

select (SimData)

Description [t,x,names] = select(simDataObj, Query) returns simulation time
and state data from the SimData object (simDataObj) that matches
the query argument Query.

In a SimData object simDataObj, the columns of the data matrix
simDataObj.Data are labeled by the cell array of metadata structures
given by simDataObj.DataInfo. The select method enables you to
pick out columns of the data matrix based on their metadata labels. For
example, to extract data for all parameters logged in a SimData object
simDataObj, use the syntax [t, x, names] = select (simDataObj,
{'Type', 'parameter'}].

[Out] = select(simDataObj, Query, 'Format', 'FormatValue')
returns the data in the specified format. Valid formats are listed in
“Input Arguments” on page 4-135.

Examples This example shows how to extract data of interest from your simulation
data with the select method.

1 The project file radiodecay.sbproj contains a model stored in a
variable called m1. Load m1 into the MATLAB workspace.

sbioloadproject gprotein_norules m1

2 Change the solver to use during the simulation and perform an
ensemble run.

csObj = getconfigset(m1);
set(csObj, 'SolverType', 'ssa');
simDataObj = sbioensemblerun(m1, 10);

3 Select all species data logged in the SimData array sdarray.

[t x n] = select(simDataObj, {'Type','species'});

4 Select data for the parameters with name 'Kd' and return the results
in a new SimData object array.

newsd = select(simDataObj, {'Type','parameter','name', 'Kd'});

4-137

select (SimData)

5 This selects all data from simDataObj with a name that matches the
pattern 'G' and returns time series objects.

ts = select(simDataObj, {'Where','Name','regexp','G'}, ...
'Format','ts');

See Also getdata, sbioselect, sbiosimulate, selectbyname, Simdata object

4-138

selectbyname (SimData)

Purpose Select data by name from SimData object array

Syntax [t,x,n] = selectbyname(simDataObj, 'NameValue')
Out = selectbyname(simDataObj, NameValue, 'Format', Format)

Arguments Output Arguments

t An n-by-1 vector of time points.
x An n-by-m data array. t and names label the rows

and columns of x respectively.
n An m-by-1 cell array of names.
Out Data returned in the format as specified in

'FormatValue', shown in “Input Arguments” on page
4-139. Depending on the specified 'FormatValue',
Out contains one of the following:

• Structure array

• SimData object

• Time series object

• Combined time series object from an array of
SimData objects

Input Arguments

simDataObj SimData object array. Enter a variable name for a
SimData object.

NameValue Names of the states for which you want to select data
from simDataObj. Must be either a string or a cell
array of strings.

4-139

selectbyname (SimData)

Query A cell array of arguments consisting of some
combination of property name/property value pairs
and/or 'Where' clauses. For a more complete
description of the query syntax, including 'Where'
clauses and their supported condition types, see
sbioselect. You can use any of the metadata
fields available in the cells of the DataInfo property
of a SimData object. These include 'Type',
'Name', 'Units', 'Compartment' (species only), or
'Reaction' (parameter only).

FormatValue Choose a format from the following table.

FormatValue Description

'num' Specifies the format that lets you return
data in numeric arrays. This is the default
when select is called with multiple output
arguments.

'nummetadata' Specifies the format that lets you return a
cell array of metadata structures in metadata
instead of names. The elements of metadata
label the columns of x.

'numqualnames' Specifies the format that lets you return
qualified names in names to resolve
ambiguities.

'struct' Specifies the format that lets you return
a structure array holding both data and
metadata. This is the default when you use a
single output argument.

'simdata' Specifies the format that lets you return data
in a new SimData object. This is the default
format when select is called with zero or one
output argument.

4-140

selectbyname (SimData)

FormatValue Description

'ts' Specifies the format that lets you return data
in time series objects, creating an individual
time series for each state or column and
SimData object in simDataObj.

'tslumped' Specifies the format that lets you return data
in time series objects, combining data from
each SimData object into a single time series.

Description The selectbyname method allows you to select data from a SimData
object array by name. [t,x,n] = selectbyname(simDataObj,
'NameValue') returns time and state data from the SimData object
simDataObj for states with names 'NameValue'.

In a SimData object simDataObj, the names labeling the columns of the
data matrix simDataObj.Data are given by simDataObj.DataNames.
A name specified in 'NameValue' can match more than one data
column, for example, when simDataObj contains data for a species
and parameter both named 'k'. To resolve ambiguities, use qualified
names in 'NameValue', such as 'CompartmentName.SpeciesName' or
'ReactionName.ParameterName'. selectbyname returns qualified
names in the output argument names when there are ambiguities.

Out = selectbyname(simDataObj, NameValue, 'Format', Format)
returns the data in the specified format. Valid formats are listed in
“Input Arguments” on page 4-139.

Examples % Get data for the species 'glucose' from the simdata array sdarray.

[t x n] = selectbyname(sdarray,'glucose');

% Get data for multiple states and return the results in a struct array.

s = selectbyname(sdarray,{'RexGFP';'nuc.GFP';'cytosol.GFP'},...

'Format','struct');

See Also getdata, sbioselect, sbiosimulate

4-141

set (any object)

Purpose Set object properties

Syntax set(Obj, ’PropertyName’, PropertyValue)
set(Obj, ’PropertyName1’, PropertyValue1, ’PropertyName2’,

PropertyValue2...)

Arguments
Obj Abstract kinetic law, compartment, configuration

set, event, kinetic law, model, parameter, reaction,
rule, species, or variant object.

'PropertyName' Name of the property to set. For properties that you
can set for each object, see AbstractKineticLaw
object, Configset object, KineticLaw object,
Model object, Parameter object, Reaction
object, Rule object, Species object , Variant
object

PropertyValue Specify the value to set. Property values depend on
the property being set. See the reference page for
an object property for values that can be specified.

Description set(Obj, ’PropertyName’, PropertyValue) sets the property
’PropertyName’ of the object Obj, to PropertyValue.

set(Obj, ’PropertyName1’, PropertyValue1, ’PropertyName2’,
PropertyValue2...) sets the properties ’PropertyName1’ and
’PropertyName2’ to PropertyValue1 and PropertyValue2
respectively, and so on in sequence. You can specify multiple
PropertyName, PropertyValue pairs.

When you want to change the name of a compartment, parameter,
or species object, use the rename method instead of set. The rename
method allows you to change the name and update the expressions
in which these components are used. Whereas set only changes the
Name property of the object, except for species objects where the species
object’s Name property and any reaction strings which refer to species
are updated to use the new name.

4-142

set (any object)

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add parameter object.

parameterObj = addparameter (modelObj, 'kf');

3 Set the ConstantValue property of the parameter object to false
and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);
get(parameterObj, 'ConstantValue')

MATLAB returns

ans =

0

See Also get , rename, setactiveconfigset

4-143

setactiveconfigset (model)

Purpose Set active configuration set for model object

Syntax configsetObj = setactiveconfigset(modelObj, 'NameValue')
configsetObj2 = setactiveconfigset(modelObj, configsetObj1)

Description configsetObj = setactiveconfigset(modelObj, 'NameValue') sets the
configuration set NameValue to be the active configuration set for the
model modelObj and returns to configsetObj.

configsetObj2 = setactiveconfigset(modelObj, configsetObj1) sets
the configset configsetObj1 to be the active configset for modelObj
and returns to configsetObj2. Any change in one of these two configset
objects configsetObj1 and configsetObj2 is reflected in the other. To
copy over a configset object from one model object to another, use
the copyobj method.

The active configuration set contains the settings that are be used
during a simulation. A default configuration set is attached to any new
model.

Examples 1 Create a model object by importing the file oscillator.xml and add
a configset that simulates for 3000 seconds.

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Configure the configsetObj StopTime to 3000.

set(configsetObj, 'StopTime', 3000)
get(configsetObj)

Active: 0
CompileOptions: [1x1 SimBiology.CompileOptions]

Name: 'myset'
Notes: ''

RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.ODESolverOptions]

4-144

setactiveconfigset (model)

SolverType: 'ode15s'
StopTime: 3000

StopTimeType: 'simulationTime'
TimeUnits: 'second'

Type: 'configset'

3 Set the new configset to be active, simulate the model using the
new configset, and plot the result.

setactiveconfigset(modelObj, configsetObj);
[t,x] = sbiosimulate(modelObj);

plot (t,x)

See Also addconfigset, getconfigset, removeconfigset

4-145

setparameter (kineticlaw)

Purpose Specify specific parameters in kinetic law object

Syntax setparameter(kineticlawObj, 'ParameterVariablesValue',
'ParameterVariableNamesValue')

Arguments
ParameterVariableValue Specify the value of the

parameter variable in the
kinetic law object.

ParameterVariableNamesValue Specify the parameter name
with which to configure
the parameter variable
in the kinetic law object.
Determines parameters in the
ReactionRate equation.

Description Configure ParameterVariableNames in the kinetic law object.

setparameter(kineticlawObj, 'ParameterVariablesValue',
'ParameterVariableNamesValue') configures the
ParameterVariableNames property of the kinetic law object
(kineticlawObj). ParameterVariableValue corresponds to one of
the strings in kineticlawObj ParameterVariables property. The
corresponding element in the kineticlawObjParameterVariableNames
property is configured to ParameterVariableNamesValue.
For example, if ParameterVariables is {'Vm', 'Km'} and
ParameterVariablesValue is specified as Vm, then the first
element of the ParameterVariableNames cell array is configured to
ParameterVariableNamesValue.

Examples Create a model, add a reaction, and then assign the
ParameterVariableNames for the reaction rate equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

4-146

setparameter (kineticlaw)

reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

ans =

'Va' 'Ka'

See Also addparameter, getspecies, setspecies

4-147

setspecies (kineticlaw)

Purpose Specify species in kinetic law object

Syntax setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue')

Arguments
SpeciesVariablesValue Specify the species variable in the

kinetic law object.
SpeciesVariableNamesValue Specify the species name with

which to configure the species
variable in the kinetic law object.
Determines the species in the
ReactionRate equation.

Description setspecies configures the kinetic law object SpeciesVariableNames
property.

setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue') configures the SpeciesVariableNames
property of the kinetic law object, kineticlawObj.
SpeciesVariablesValue corresponds to one of the strings in
the SpeciesVariables property of kineticlawObj. The corresponding
element in kineticlawObj SpeciesVariableNames property is
configured to SpeciesVariableNamesValue.

For example, if SpeciesVariables are {'S', 'S1'} and
SpeciesVariablesValue is specified as S1, the first element
of the SpeciesVariableNames cell array is configured to
SpeciesVariableNamesValue.

Examples Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

4-148

setspecies (kineticlaw)

2 Create a kinetic law object for the reaction object of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that should be set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

ans =

'a'

See Also addparameter, getspecies, setparameter

4-149

SimData object

Purpose Simulation data storage

Description The SimBiology SimData object contains simulation data. The output
from the sbiosimulate function, is stored in the SimData object which
holds time and state data as well as metadata, such as the types
and names for the logged states or the configuration set used during
simulation.

You can also store data from multiple simulation runs as an array of
SimData objects. Thus, the output of sbioensemblerun is an array
of SimData objects. You can use any SimData method on an array of
SimData objects.

You can access the time, data, and metadata stored in the SimData
object through the properties in “Property Summary” on page 4-151.
Properties define the characteristics of an object. Use the get and
set commands to list object properties and change their values at the
command line.

Methods you can use to query the SimData object are listed in “Method
Summary” on page 4-150.

Constructor
Summary

sbioensemblerun Multiple stochastic ensemble
runs of SimBiology model

sbiosimulate Simulate model object

Method
Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
getdata (SimData) Get data from SimData object

array

4-150

SimData object

getsensmatrix (SimData) Get 3-D sensitivity matrix from
SimData array

resample (SimData) Resample SimData object array
onto new time vector

select (SimData) Select data from SimData object
selectbyname (SimData) Select data by name from

SimData object array

Property
Summary

Data Store simulation data
DataCount Numbers of species, parameters,

sensitivities
DataInfo Metadata labels for simulation

data
DataNames Show names in SimData object
ModelName Name of model simulated
Name Specify name of object
Notes HTML text describing SimBiology

object
RunInfo Information about simulation
Time Show simulation time steps
TimeUnits Show stop time units for

simulation
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object,
Species object

4-151

Species object

Purpose Options for compartment species

Description The SimBiology species object represents a species, which is a chemical
or entity that participates in reactions, for example, DNA, ATP, Pi,
creatine, G-Protein, or Mitogen-Activated Protein Kinase
(MAPK). Species amounts can vary or remain constant during a
simulation.

To add species that participate in reactions, add the reaction to the
model. The process of adding the reaction to the model creates a
compartment object (unnamed) and the necessary species objects.

Alternatively, create and add a species object to a compartment object,
using the addspecies method at the command line. The SimBiology
desktop adds a default compartment (unnamed) for you and you can
add a species in the Species pane. In the Project Explorer, expand
Compartment and double-click Species to open the Species pane.

See “Property Summary” on page 4-153 for links to species property
reference pages. Properties define the characteristics of an object.
Use the get and set commands to list object properties and change
their values at the command line. You can graphically change object
properties in the graphical user interface.

Constructor
Summary

addspecies (compartment) Create species object and add to
compartment object

Method
Summary

Methods for species objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties

4-152

Species object

rename (compartment,
parameter, species)

Rename object and update
expressions

set (any object) Set object properties

Property
Summary

Properties for species objects

Annotation Store link to URL or file
BoundaryCondition Indicate species boundary

condition
ConstantAmount Specify variable or constant

species amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also Compartment object, Configset object, KineticLaw object, Model
object, Parameter object, Reaction object, Root object, Rule
object

4-153

Unit object

Purpose Hold information about user-defined unit

Description The SimBiology unit object holds information about user-defined units.
To create a unit, create the unit object and add the unit to the library
using the sbioaddtolibrary function.

Use the unit object property Composition to specify the composition of
your units. See “Property Summary” on page 4-154 for links to unit
object property reference pages.

Properties define the characteristics of an object. Use the get and
set commands to list object properties and change their values at the
command line. You can graphically change unit object properties using
the Unit Manager in the SimBiology desktop.

Constructor
Summary

sbiounit Create user-defined unit

Method
Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Annotation Store link to URL or file
Composition Unit composition
Multiplier Relationship between defined

unit and base unit
Name Specify name of object

4-154

Unit object

Notes HTML text describing SimBiology
object

Offset Unit composition modifier
Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also AbstractKineticLaw object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object,
Species object, UnitPrefix object

4-155

UnitPrefix object

Purpose Hold information about user-defined unit prefix

Description The SimBiology unit prefix object holds information about user-defined
unit prefixes. To create a unit prefix, create the unit prefix object and
add the unit prefix to the library using the sbioaddtolibrary function.

Use the unit prefix object property Exponent, to specify the exponent
of your unit prefix. See “Property Summary” on page 4-156 for links to
unit prefix object property reference pages.

Properties define the characteristics of an object. Use the get and
set commands to list object properties and change their values at the
command line. You can graphically change unit prefix object properties
using the Unit Manager in the SimBiology desktop.

Constructor
Summary

sbiounitprefix Create user-defined unit prefix

Method
Summary

delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
set (any object) Set object properties

Property
Summary

Annotation Store link to URL or file
Exponent Exponent value of unit prefix
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object

4-156

UnitPrefix object

Tag Specify label for SimBiology
object

Type Display top-level SimBiology
object type

UserData Specify data to associate with
object

See Also AbstractKineticLaw object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object,
Species object, Unit object

4-157

Variant object

Purpose Store alternate component values

Description The SimBiology variant object stores the names and values of model
components and allows you to use the values stored in a variant object
as the alternate value to be applied during a simulation. You can store
values for species InitialAmount, parameter Value, and compartment
Capacity in a variant object. Simulating using a variant does not
alter the model component values. The values specified in the variant
temporarily apply during simulation.

Using one or more variant objects associated with a model allows you to
evaluate model behavior during simulation, with different values for
the various model components without having to search and replace
these values, or having to create additional models with these values. If
you determine that the values in a variant object accurately define your
model, you can permanently replace the values in your model with the
values stored in the variant object, using the commit method.

To use a variant in a simulation you must add the variant object to the
model object and set the Active property of the variant to true. Set the
Active property to true if you always want the variant to be applied
before simulating the model. You can also enter the variant object as an
argument to sbiosimulate; this applies the variant only for the current
simulation and supersedes any active variant objects on the model.

When there are multiple active variant objects on a model, if there are
duplicate specifications for a property’s value, the last occurrence for
the property value in the array of variants, is used during simulation.
You can find out which variant is applied last by looking at the indices
of the variant objects stored on the model. Similarly, in the Content
property, if there are duplicate specifications for a property’s value,
the last occurrence for the property in the Content property, is used
during simulation.

Use the addcontent method to append contents to a variant object.

See “Property Summary” on page 4-159 for links to species property
reference pages. Properties define the characteristics of an object.
Use the get and set commands to list object properties and change

4-158

Variant object

their values at the command line. You can graphically change object
properties in the graphical user interface.

Constructor
Summary

sbiovariant Construct variant object

Method
Summary

Methods for variant objects

addcontent (variant) Append content to variant object
commit (variant) Commit variant contents to model
copyobj (any object) Copy SimBiology object and its

children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology

object
get (any object) Get object properties
rmcontent (variant) Remove contents from variant

object
set (any object) Set object properties
verify (model, variant) Validate and verify SimBiology

model

Property
Summary

Properties for variant objects

Active Indicate object in use during
simulation

Annotation Store link to URL or file
Content Contents of variant object
Name Specify name of object

4-159

Variant object

Notes HTML text describing SimBiology
object

Parent Indicate parent object
Tag Specify label for SimBiology

object
Type Display top-level SimBiology

object type
UserData Specify data to associate with

object

See Also Compartment object, Configset object, Model object, Parameter
object, Species object

sbiosimulate

4-160

verify (model, variant)

Purpose Validate and verify SimBiology model

Syntax verify(modelObj)
verify(modelObj, configsetObj)
verify(modelObj, variantObj)
verify(modelObj, configsetObj, variantObj)

Description verify(modelObj) performs checks on a model object (modelObj) to
verify that you can simulate the model. This method generates stacked
errors and warnings if any problems are found. To see the entire list of
errors and warnings, use sbiolasterror and sbiolastwarning. The
verify method uses the active configuration set for verification.

verify(modelObj, configsetObj) performs checks on the specified
configuration set object (configsetObj) in conjunction with the model
object (modelObj) to verify that you can simulate the model.

verify(modelObj, variantObj) performs checks on the variant object
(variantObj) in conjunction with the model object (modelObj) to verify
that you can simulate the model. The model object is required for the
verification of the variant object.

verify(modelObj, configsetObj, variantObj) performs checks on
the configuration set object configsetObj, and the variant object
variantObj in conjunction with the model object (modelObj) to verify
that you can simulate the model.

Verification in the SimBiology GUI

While you are building your model in the SimBiology desktop, you can

click at any time to generate a list of any errors and warnings
in the model. The errors and warnings appear in the Errors and
Warnings pane.

Examples modelObj = sbmlimport('radiodecay.xml');
verify(modelObj);

See Also sbiolasterror, sbiolastwarning

4-161

verify (model, variant)

4-162

5

Property Reference

Abstract Kinetic Law (p. 5-2) Properties for abstract kinetic law
objects

Compartments (p. 5-3) Properties for compartment objects
Configuration Sets (p. 5-4) Properties for configuration set

objects
Events (p. 5-5) Properties for event objects
Kinetic Laws (p. 5-6) Properties for kinetic law objects
Models (p. 5-7) Properties for model objects
Parameters (p. 5-8) Properties for parameter objects
Reactions (p. 5-9) Properties for reaction objects
Root (p. 5-10) Properties for the root object
Rules (p. 5-11) Properties for rule objects
SimData (p. 5-12) Properties for SimData objects
Species (p. 5-13) Properties for species objects
Unit (p. 5-13) Properties for unit objects
Unit Prefix (p. 5-14) Properties for unit objects
Variant (p. 5-14) Properties for variant objects
Using Object Properties (p. 5-16) Command-line syntax for entering

and retrieving property values

5 Property Reference

Abstract Kinetic Law
Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
Name Specify name of object
Notes HTML text describing SimBiology

object
ParameterVariables Parameters in abstract kinetic law
Parent Indicate parent object
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-2

Compartments

Compartments
Annotation Store link to URL or file
Capacity Compartment capacity
CapacityUnits Compartment capacity units
Compartments Array of compartments in model or

compartment
ConstantCapacity Specify variable or constant

compartment capacity
Name Specify name of object
Notes HTML text describing SimBiology

object
Owner Owning compartment
Parent Indicate parent object
Species Array of species in compartment

object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-3

5 Property Reference

Configuration Sets
Active Indicate object in use during

simulation
CompileOptions Dimensional analysis and unit

conversion options
Name Specify name of object
Notes HTML text describing SimBiology

object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Set stop time for simulation
StopTimeType Specify type of stop time for

simulation
TimeUnits Show stop time units for simulation
Type Display top-level SimBiology object

type

5-4

Events

Events
Properties for event objects

Active Indicate object in use during
simulation

Annotation Store link to URL or file
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology object
Trigger Event trigger
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-5

5 Property Reference

Kinetic Laws
Annotation Store link to URL or file
Expression Expression to determine reaction

rate equation
KineticLawName Name of kinetic law applied to

reaction
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects
ParameterVariableNames Cell array of reaction rate

parameters
ParameterVariables Parameters in abstract kinetic law
Parent Indicate parent object
SpeciesVariableNames Cell array of species used in reaction

rate equation
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-6

Models

Models
Annotation Store link to URL or file
Compartments Array of compartments in model or

compartment
Events Contain all event objects
Models Contain all model objects
Name Specify name of object
Notes HTML text describing SimBiology

object
Parameters Array of parameter objects
Parent Indicate parent object
Reactions Array of reaction objects
Rules Array of rules in model object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-7

5 Property Reference

Parameters
Annotation Store link to URL or file
ConstantValue Specify variable or constant

parameter value
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object
Value Assign value to parameter object
ValueUnits Parameter value units

5-8

Reactions

Reactions
Active Indicate object in use during

simulation
Annotation Store link to URL or file
KineticLaw Show kinetic law used for

ReactionRate

Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction

object
Reversible Specify whether reaction is

reversible or irreversible
Stoichiometry Species coefficients in reaction
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-9

5 Property Reference

Root
BuiltInLibrary Library of built-in components
Models Contain all model objects
Type Display top-level SimBiology object

type
UserDefinedLibrary Library of user-defined components

5-10

Rules

Rules
Active Indicate object in use during

simulation
Annotation Store link to URL or file
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Rule Specify species and parameter

interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-11

5 Property Reference

SimData
Data Store simulation data
DataCount Numbers of species, parameters,

sensitivities
DataInfo Metadata labels for simulation data
DataNames Show names in SimData object
ModelName Name of model simulated
Name Specify name of object
Notes HTML text describing SimBiology

object
RunInfo Information about simulation
Time Show simulation time steps
TimeUnits Show stop time units for simulation
UserData Specify data to associate with object

5-12

Species

Species
Annotation Store link to URL or file
BoundaryCondition Indicate species boundary condition
ConstantAmount Specify variable or constant species

amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

Unit
Annotation Store link to URL or file
Composition Unit composition
Multiplier Relationship between defined unit

and base unit
Name Specify name of object
Notes HTML text describing SimBiology

object
Offset Unit composition modifier
Parent Indicate parent object
Tag Specify label for SimBiology object

5-13

5 Property Reference

Type Display top-level SimBiology object
type

UserData Specify data to associate with object

Unit Prefix
Annotation Store link to URL or file
Exponent Exponent value of unit prefix
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

Variant
Active Indicate object in use during

simulation
Annotation Store link to URL or file
Content Contents of variant object
Name Specify name of object
Notes HTML text describing SimBiology

object
Parent Indicate parent object

5-14

Variant

Tag Specify label for SimBiology object
Type Display top-level SimBiology object

type
UserData Specify data to associate with object

5-15

5 Property Reference

Using Object Properties
Command-line syntax for entering and retrieving property values.

Entering Property Values (p. 5-16) Use either MATLAB functions or
object dot notation to enter or change
property values.

Retrieving Property Values (p. 5-16) Use either MATLAB functions or
object dot notation to get property
values.

Help for Objects, Methods, and
Properties (p. 5-17)

Use the command sbiohelp to get
information about properties.

Entering Property Values
Enter or change a single property value using dot notation.

ObjectName.PropertyName = PropertyValue

Enter or change one or more property values using the MATLAB function set.

set(ObjectName, 'Propertyname', PropertyValue, ...)

Retrieving Property Values
Retrieve a single property value using dot notation.

PropertyValue = ObjectName.PropertyName

Retrieve one or more property values using the MATLAB function get.

PropertyValue(s) = get(ObjectName, 'PropertyName', ...)

Retrieve one or more property values using the object method get.

PropertyValue(s) = ObjectName.get('PropertyName', ...)

List or retrieve all property values using one of the following commands:

get(ObjectName)
AllPropertyValues = get(ObjectName)

5-16

Using Object Properties

ObjectName.get

Help for Objects, Methods, and Properties
Display information for SimBiology object methods and properties in the
MATLAB Command Window.

help sbio Display a list of functions and
methods.

help FunctionName Display function information.
sbiohelp('MethodName') Display method information.
sbiohelp('PropertyName') Display property information.

5-17

5 Property Reference

5-18

6

Properties — Alphabetical
List

AbsoluteTolerance

Purpose Specify largest allowable absolute error

Description The AbsoluteTolerance property specifies the largest allowable
absolute error at any step in simulation. It is a property of
SolverOptions object. SolverOptions is a property of the configset
object. AbsoluteTolerance is available for the ode solvers ('ode45',
'ode23', 'ode113', 'ode15s', 'ode23s', 'ode23t', and 'ode23tb').

At each simulation step, the solver estimates the local error ei in the
ith state vector y. Simulation converges at that time step if ei satisfies
the following equation:

|ei|≤max(RelativeTolerance*|yi|,AbsoluteTolerance)

Thus at higher state values, convergence is determined by
RelativeTolerance. As the state values approach zero, convergence
is controlled by AbsoluteTolerance. The choice of values for
RelativeTolerance and AbsoluteTolerance will vary depending on
the problem. The default values should work for first trials of the
simulation; however if you want to optimize the solution, consider that
there is a trade-off between speed and accuracy. If the simulation
takes too long, you can increase the values of RelativeTolerance and
AbsoluteTolerance at the cost of some accuracy. If the results appear
to be inaccurate, you can decrease the tolerance values but this will
slow down the solver. If the magnitude of the state values is high, you
can try to decrease the relative tolerance to get more accurate results.

This may be important for reactions where species values tend to zero.
Even if you are not interested in the value of a state y(i) when it
is small, you may have to specify AbsoluteTolerance small enough
to get some correct digits in y(i) so that you can accurately compute
more interesting state values.

Characteristics
Applies to Object: SolverOptions
Data type double

6-2

AbsoluteTolerance

Data values >0, <1. Default is 1e-6.
Access Read/write

Examples This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'AbsoluteTolerance', 1.0e-8);
get(configsetObj.SolverOptions, 'AbsoluteTolerance')

ans =

1.0000e-008

See Also RelativeTolerance

6-3

Active

Purpose Indicate object in use during simulation

Description The Active property indicates whether a simulation is using a
SimBiology object. A SimBiology model is organized into a hierarchical
group of objects. Use the Active property to include or exclude objects
during a simulation.

• Configuration set — For the configset object, use the method
setactiveconfigset to set the object Active property to true.

• Event, Reaction, or Rule — When an event, a reaction, or rule
object Active property is set to false, the simulation does not
include the event, reaction, or rule. This is a convenient way to test a
model with and without a reaction or rule.

• Variant — Set the Active property to true if you always want the
variant to be applied before simulating the model. You can also pass
the variant object as an argument to sbiosimulate; this applies the
variant only for the current simulation. For more information on
using the Active property for variants, see Variant object.

Characteristics
Applies to Objects: configset, event, reaction, rule, or

variant
Data type boolean

Data values true or false. The default value for events,
reactions, and rules is true. For the configset
object, default is true. For added configset
object, the default is false. For variants, the
default is false.

Access Read/write

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

6-4

Active

2 Add a reaction object and verify that the Active property setting
is 'true' or 1.

reactionObj = addreaction (modelObj, 'a + b -> c + d');
get (reactionObj, 'Active')

MATLAB returns:

ans =

1

3 Set the Active property to 'false' and verify.

set (reactionObj, 'Active', false);
get (reactionObj, 'Active')

MATLAB returns:

ans =

0

See Also addconfigset, addreaction, addrule, Event object, Reaction
object, Rule object, setactiveconfigset, Variant object

6-5

Annotation

Purpose Store link to URL or file

Description The Annotation property stores the URL or file name linking to
information about a model.

Characteristics
Applies to SimBiology objects: abstract kinetic law,

configuration set, compartment, event, kinetic
law, model, parameter, reaction, rule, species,
or unit

Data type char string, URL
Data values Character string with a directory path and

filename or a URL
Access Read/write

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Set the annotation for a model object.

set (modelObj, 'annotation', 'www.reactome.org')

3 Verify the assignment.

get (modelObj, 'annotation')

MATLAB returns:

ans =

www.reactome.org

See Also addkineticlaw, addparameter, addreaction, addrule, addspecies,
sbiomodel, sbioroot, sbiounit, sbiounitprefix

6-6

BoundaryCondition

Purpose Indicate species boundary condition

Description The BoundaryCondition property indicates whether a species object
has a boundary condition. If BoundaryCondition is true, the species
quantity is determined by InitialAmount and/or a rule object, and not
by the reaction rate equation. All SimBiology species are state variables
regardless of the BoundaryCondition or ConstantAmount property.

By default, BoundaryCondition is false and the reaction rate
equations determine the rate of change of a species quantity in the
model. Boundary condition is used when a species is modeled as a
participant of reactions but the species quantity is not determined by
a reaction rate equation.

More Information

Consider the following two use cases of boundary conditions:

• Modeling receptor-ligand interactions that affect the rate of change
of the receptor but not the ligand. For example, in response to
hormone, steroid receptors such as the glucocorticoid receptor (GR)
translocate from the cytoplasm (cyt) to the nucleus (nuc). The hsp90/
hsp70 chaperone complex directs this nuclear translocation [Pratt
2004]. The natural ligand for GR is cortisol; the synthetic hormone
dexamethasone (dex) is used in place of cortisol in experimental
systems. In this system dexamethasone participates in the reaction
but the quantity of dexamethasone in the cell is regulated using a
rule. To simply model translocation of GR you could use the following
reactions:

Formation of the chaperone-receptor complex,

Hsp90_complex + GR_cyt -> Hsp90_complex:GR_cyt

In response to the synthetic hormone dexamethasone (dex), GR
moves from the cytoplasm to the nucleus.

Hsp90_complex:GR_cyt + dex -> Hsp90_complex + GR_nuc + dex

6-7

BoundaryCondition

For dex,

BoundaryCondition = true; ConstantAmount = false

In this example dex is modeled as a boundary condition with a rule to
regulate the rate of change of dex in the system. Here, the quantity
of dex is not determined by the rate of the second reaction but by
a rate rule such as

ddex/dt = 0.001

which is specified in the SimBiology software as

dex = 0.001

• Modeling the role of nucleotides (for example, GTP, ATP, cAMP) and
cofactors (for example, Ca++, NAD+, coenzyme A). Consider the role of
GTP in the activation of Ras by receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP

For GTP, BoundaryCondition = true; ConstantAmount = true

Model GTP and GDP with boundary conditions, thus making them
boundary species. In addition, you can set the ConstantAmount
property of these species to true to indicate that their quantity does
not vary during a simulation.

Characteristics
Applies to Object: species
Data type boolean

Data values true or false. The default value is false.
Access Read/write

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

6-8

BoundaryCondition

2 Add a species object and verify that the boundary condition property
setting is 'false' or 0.

speciesObj = addspecies(modelObj, 'glucose');
get(speciesObj, 'BoundaryCondition')

MATLAB returns:

ans =

0

3 Set the boundary condition to 'true' and verify.

set(speciesObj, 'BoundaryCondition', true);
get(speciesObj, 'BoundaryCondition')

MATLAB returns:

ans =

1

References Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J. (2004), Role
of molecular chaperones in steroid receptor action, Essays Biochem,
40:41-58.

See Also addrule, addspecies, ConstantAmount, InitialAmount

6-9

BuiltInKineticLaws

Purpose Contain built-in kinetic laws

Note BuiltInKineticLaws has been removed and produces an error.
Use BuiltInLibrary instead.

Description BuiltInKineticLaws is a SimBiology root object property showing all
abstract kinetic laws that are shipped with the SimBiology software.
Use the command sbiowhos -builtin -kineticlaw to see the list of
built-in kinetic laws. You can use built-in kinetic laws when you use the
command addkineticlaw to create a kinetic law object for a reaction
object. Refer to the kinetic law by name when you create the kinetic law
object, for example:

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

You cannot add, modify, or delete BuiltInKineticLaws.

See “Abstract Kinetic Law” on page 6-49 for a definition and more
information.

Characteristics
Applies to Object: root
Data type char string of valid abstract kinetic law

name
Data values Valid kinetic laws
Access Read-only

See Also BuiltInLibrary

6-10

BuiltInLibrary

Purpose Library of built-in components

Description BuiltInLibrary is a SimBiology root object property containing
all built-in components namely units, unit prefixes, and abstract
kinetic laws that are shipped with the SimBiology product. You
cannot add, modify, or delete components in the built-in library. The
BuiltInLibrary property is an object that contains the following
properties:

• Units — Contains all units that are shipped with the SimBiology
product. You can specify units for compartment capacity, species
amounts and parameter values, to do dimensional analysis and unit
conversion during simulation. You can display the built-in units
either by using the command sbiowhos -builtin -unit, or by
accessing the root object.

• UnitPrefixes— Contains all unit prefixes that are shipped with the
SimBiology product. You can specify unit prefixes in combination
with a valid unit for compartment capacity, species amounts and
parameter values, to do dimensional analysis and unit conversion
during simulation. You can display the built-in unit prefixes either
by using the command sbiowhos -builtin -unitprefix, or by
accessing the root object.

• KineticLaws— Contains all abstract kinetic laws that are shipped
with the SimBiology product. Use the command sbiowhos -builtin
-kineticlaw to see the list of built-in kinetic laws. You can use
built-in kinetic laws when you use the command addkineticlaw
to create a kinetic law object for a reaction object. Refer to the
kinetic law by name when you create the kinetic law object,
for example, kineticlawObj = addkineticlaw(reactionObj,
'Henri-Michaelis-Menten');.

See “Abstract Kinetic Law” on page 6-49 for a definition and more
information.

Characteristics BuiltInLibrary

6-11

BuiltInLibrary

Applies to Object: root
Data type object
Data values Unit, unit prefix, and abstract kinetic law

objects
Access Read-only

Characteristics for BuiltInLibrary properties:

• Units

Applies to BuiltInLibrary property

Data type unit objects
Data values units
Access Read-only

• UnitPrefixes

Applies to BuiltInLibrary property

Data type Unit prefix objects
Data values Uunit prefixes
Access Read-only

• KineticLaws

Applies to BuiltInLibrary property

Data type Abstract kinetic law object
Data values Kinetic laws
Access Read-only

6-12

BuiltInLibrary

Examples Example 1

This example uses the command sbiowhos to show the current list of
built-in components.

sbiowhos -builtin -kineticlaw
sbiowhos -builtin -unit
sbiowhos -builtin -unitprefix

Example 2

This example shows the current list of built-in components by accessing
the root object.

rootObj = sbioroot;
get(rootObj.BuiltinLibrary, 'KineticLaws')
get(rootObj.BuiltinLibrary, 'Units')
get(rootObj.BuiltinLibrary, 'UnitPrefixes')

See Also sbioaddtolibrary, sbioremovefromlibrary sbioroot, sbiounit,
sbiounitprefix, UserDefinedLibrary

6-13

BuiltInUnitPrefixes

Purpose Contain built-in unit prefixes

Note BuiltInUnitPrefixes has been removed and produces an error.
Use BuiltInLibrary instead.

Description BuiltInUnitPrefixes is a SimBiology root object property showing
all unit prefixes that are shipped with SimBiology. You can specify
units with prefixes for species amounts and parameter values to do
dimensional analysis and unit conversion during simulation. The
valid units and unit prefixes are either built-in or user-defined. You
can display the built-in unit prefixes either by using the command
sbiowhos, or by accessing the root object.

You cannot add, modify, or delete BuiltInUnitsPrefixes.

Characteristics
Applies to Object: root
Data type char string

Data values Valid units
Access Read-only

See Also BuiltInLibrary

6-14

BuiltInUnits

Purpose Contain built-in units

Note BuiltInUnits has been removed and produces an error. Use
BuiltInLibrary instead.

Description BuiltInUnits is a SimBiology root object property showing all units
that are shipped with SimBiology. You can specify units for species
amounts and parameter values to do dimensional analysis and unit
conversion during simulation. The valid units are either built-in or
user-defined. You can display the built-in units either by using the
command sbiowhos, or by accessing the root object.

You cannot add, modify, or delete BuiltInUnits.

Characteristics
Applies to Object: root
Data type char string

Data values Valid units
Access Read-only

See Also BuiltInLibrary

6-15

Capacity

Purpose Compartment capacity

Description The Capacity property indicates the size of the SimBiology
compartment object. If the size of the compartment does not vary during
simulation set the property ConstantCapacity to true.

You can vary compartment capacity using rules or events.

Note Remember to set the ConstantCapacity property to false for
varying capacity.

Events cannot result in the capacity having a negative value. Rules
could result in capacity having negative value.

Characteristics
Applies to Object: compartment
Data type double

Data values Positive real number. The default value is 1.
Access Read/write

Examples Add a compartment to a model and set the capacity of the compartment.

1 Create a model object named my_model.

modelObj = sbiomodel ('comp_model');

L

2 Add the compartment object with the name nucleus and a capacity
of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);

See Also addcompartment, addspecies, CapacityUnits, ConstantCapacity

6-16

CapacityUnits

Purpose Compartment capacity units

Description The CapacityUnits property indicates the unit definition for the
Capacity property of a compartment object. CapacityUnits can be
any unit from the units library. To get a list of the defined units
in the library, use the sbioshowunits function. If CapacityUnits
changes from one unit definition to another, the Capacity does not
automatically convert to the new units. The sbioconvertunits
function does this conversion. To add a user-defined unit to the list, see
sbioaddtolibrary.

Characteristics
Applies to Object: compartment

Data type char string

Data values Units from library with dimensions of length,
area, or volume. Default = '' (empty).

Access Read/write

Example 1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add a compartment object with the name cytoplasm and a capacity
of 0.5.

compObj = addcompartment (modelObj, 'cytoplasm', 0.5);

3 Set the CapacityUnits to femtoliter, and verify.

set (compObj,'CapacityUnits', 'femtoliter');
get (compObj,'CapacityUnits')

MATLAB returns:

ans =

6-17

CapacityUnits

femtoliter

See Also InitialAmount, sbioaddtolibrary, sbioconvertunits,
sbioshowunits

6-18

Compartments

Purpose Array of compartments in model or compartment

Description Compartments shows you a read-only array of SimBiology compartment
objects in the model object and the compartment object. In the model
object, the Compartments property indicates all the compartments in a
Model object as a flat list. In the compartment object, the Compartments
property indicates other compartments that are referenced within the
compartment. The two instances of Compartments are illustrated in
“Examples” on page 6-19.

You can add a compartment object using the method addcompartment.

Characteristics
Applies to Objects: compartment, model
Data type Array of compartment objects
Data values Compartment object. Default is [] (empty).
Access Read-only

Examples 1 Create a model object named modelObj.

modelObj = sbiomodel('cell');

2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');
compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');

4 Display the Compartments property in the model object.

get(modelObj, 'Compartments')

SimBiology Compartment Array

6-19

Compartments

Index: Name: Capacity: CapacityUnits:
1 nucleus 1
2 mitochondrion 1
3 matrix 1

5 Display the Compartments property in the compartment object.

get(compartmentObj2, 'Compartments')

SimBiology Compartment - matrix

Compartment Components:
Capacity: 1
CapacityUnits:
Compartments: 0
ConstantCapacity: true
Owner: mitochondrion
Species: 0

See Also addcompartment, addreaction, addspecies, Compartment object

6-20

CompileOptions

Purpose Dimensional analysis and unit conversion options

Description The SimBiology CompileOptions property is an object that defines
the compile options available for simulation; you can specify whether
dimensional analysis and unit conversion is necessary for simulation.
Compile options are checked during compile time. The compile options
object can be accessed through the CompileOptions property of the
configset object. Retrieve CompileOptions object properties with the
get function and configure the properties with the set function.

Property
Summary

DefaultSpeciesDimension Species dimension
DimensionalAnalysis Perform dimensional analysis on

model
Type Display top-level SimBiology

object type
UnitConversion Perform unit conversion

Characteristics
Applies to Object: configset
Data type Object
Data values Compile-time options
Access Read-only

Example 1 Retrieve the configset object of modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the CompileOptions object (optionsObj) from the
configsetObj.

optionsObj = get(configsetObj, 'CompileOptions');

6-21

CompileOptions

Compile Settings:

UnitConversion: false
DimensionalAnalysis: true

See Also get, set

6-22

Composition

Purpose Unit composition

Description The Composition property holds the composition of a unit object. The
Composition property shows the combination of base and derived units
that defines the unit. For example, molarity is the name of the unit
and the composition is mole/liter. Base units are the set of units used
to define all unit quantity equations. Derived units are defined using
base units or mixtures of base and derived units.

Valid physical quantities for reaction rates are amount/time, mass/time,
or concentration/time.

Characteristics
Applies to Object: Unit
Data type char string

Data values Valid combination of units and prefixes from
the library. Default is '' (empty).

Access Read/write

Examples This example shows you how to create a user-defined unit, add it to the
user-defined library, and query the Composition property.

1 Create a unit for the rate constants of a second-order reaction.

unitObj = sbiounit('secondconstant', '1/molarity*second', 1);

2 Query the Composition property.

get(unitObj, 'Composition')

ans =

1/molarity*second

3 Change the Composition property.

6-23

Composition

set(unitObj, 'Composition', 'liter/mole*second'))

ans =

liter/mole*second

4 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

See Also get, Multiplier, Offset, sbiounit, set

6-24

ConstantAmount

Purpose Specify variable or constant species amount

Description The ConstantAmount property indicates whether the quantity of the
species object can vary during the simulation. ConstantAmount can be
either true or false. If ConstantAmount is true, the quantity of the
species cannot vary during the simulation. By default, ConstantAmount
is false and the quantity of the species can vary during the simulation.
If ConstantAmount is false, the quantity of the species can be
determined by reactions and rules.

The property ConstantAmount is for species objects; the property
ConstantValue is for parameter objects.

More Information

The following is an example of modeling species as constant amounts:

Modeling the role of nucleotides (GTP, ATP, cAMP) and cofactors (Ca++,
NAD+, coenzyme A). Consider the role of GTP in the activation of Ras
by receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP

Model GTP and GDP with constant amount set to true. In addition,
you can set the BoundaryCondition of these species to true, thus
making them boundary species.

Characteristics
Applies to Object: species
Data type boolean

Data values true or false. The default value is false.
Access Read/write

Examples 1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

6-25

ConstantAmount

2 Add a species object and verify that the ConstantAmount property
setting is 'false' or 0.

speciesObj = addspecies (modelObj, 'glucose');
get (speciesObj, 'ConstantAmount')

MATLAB returns:

ans =

0

3 Set the constant amount to 'true' and verify.

set (speciesObj, 'ConstantAmount', true);
get (speciesObj, 'ConstantAmount')

MATLAB returns:

ans =

1

See Also addspecies, BoundaryCondition

6-26

ConstantCapacity

Purpose Specify variable or constant compartment capacity

Description The ConstantCapacity property indicates whether the capacity of the
compartment object can vary during the simulation. ConstantCapacity
can be either true (1) or false (0). If ConstantCapacity is true, the
quantity of the compartment cannot vary during the simulation. By
default, ConstantCapacity is true and the quantity of the compartment
cannot vary during the simulation. If ConstantCapacity is false, the
quantity of the compartment can be determined by rules and events.

Characteristics
Applies to Object: compartment
Data type boolean

Data values true or false. The default value is true.
Access Read/write

Examples Add a compartment to a model and check the ConstantCapacity
property of the compartment.

1 Create a model object named comp_model.

modelObj = sbiomodel ('comp_model');

2 Add the compartment object with the name nucleus and with a
capacity of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);

3 Display the ConstantCapacity property.

get(compartmentObj, 'ConstantCapacity')

ans =

1

6-27

ConstantCapacity

See Also addcompartment, ConstantAmount, ConstantValue

6-28

ConstantValue

Purpose Specify variable or constant parameter value

Description The ConstantValue property indicates whether the value of a
parameter can change during a simulation. Enter either true (value is
constant) or false (value can change).

You can allow the value of the parameter to change during a simulation
by specifying a rule that changes the Value property of the parameter
object.

The property ConstantValue is for parameter objects; the property
ConstantAmount is for species objects.

More Information

As an example, consider feedback inhibition of an enzyme such as
aspartate kinase by threonine. Aspartate kinase has three isozymes
that are independently inhibited by the products of downstream
reactions (threonine, homoserine, and lysine). Although threonine
is made through a series of reactions in the synthesis pathway, for
illustration, the reactions are simplified as follows:

Aspartic Aspartylphosphate acid aspartate kinase⎯ →⎯⎯⎯⎯⎯⎯⎯ −β

ββ − ⎯ →⎯Aspartylphosphate Threonine

To model inhibition of aspartate kinase by threonine, you could use
a rule like the algebraic rule below to vary the rate of the above
reaction and simulate inhibition. In the rule, the rate constant for the
above reaction is denoted by k_aspartate_kinase and the quantity
of threonine is threonine.

k_aspartate_kinase -(1/threonine)

Characteristics
Applies to Object: parameter
Data type boolean

6-29

ConstantValue

Data values true or false. The default value is 'true'.
Access Read/write

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add a parameter object.

parameterObj = addparameter (modelObj, 'kf');

3 Change the ConstantValue property of the parameter object from
default (true) to false and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);
get(parameterObj, 'ConstantValue')

MATLAB returns:

ans =

0

See Also addparameter

6-30

Content

Purpose Contents of variant object

Description The Content property contains the data for the variant object. Content
is a cell array with the structure {'Type', 'Name', 'PropertyName',
'PropertyValue'}. You can store values for species InitialAmount,
parameter Value, and compartment Capacity, in a variant object.

For more information about variants, see Variant object.

Characteristics
Applies to Object: variant
Data type cell array

Data values Default value is [](empty).
Access Read/write

Examples 1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
A = addspecies(compObj, 'A');
B = addspecies(compObj, 'B');
C = addspecies(compObj, 'C');

2 Add a variant object that varies the species’ InitialAmount property.

variantObj = addvariant(modelObj, 'v1');

addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...

{'species', 'B', 'InitialAmount', 10}});

% Display the variant

variantObj

SimBiology Variant - v1 (inactive)

ContentIndex: Type: Name: Property: Value:

1 species A InitialAmount 5

2 species B InitialAmount 10

6-31

Content

3 Append data to the Content property.

addcontent(variantObj, {'species', 'C', 'InitialAmount', 15});

SimBiology Variant - v1 (inactive)

ContentIndex: Type: Name: Property: Value:

1 species A InitialAmount 5

2 species B InitialAmount 10

3 species C InitialAmount 15

4 Remove a species from the Content property.

rmcontent(variantObj, 3);

5 Replace the data in the Content property.

set(variantObj, 'Content', {'species', 'C', 'InitialAmount', 15});

See Also addcontent, rmcontent, sbiovariant

6-32

Data

Purpose Store simulation data

Description The Data property contains the simulation data stored in the SimData
object.

This property contains all data logged during a simulation, including
species amounts, parameter values, and sensitivities. The property is
an m x n array, where m is the number of time steps in the simulation
and n is the number of quantities logged. The rows of the array are
labeled by the time points in the Time property, and the columns are
labeled by the metadata in the DataInfo property.

Characteristics
Applies to Object: SimData
Data type double

Data values Default value is [] (empty).
Access Read-only

See Also DataInfo, ModelName

6-33

DataCount

Purpose Numbers of species, parameters, sensitivities

Description The DataCount property shows how many species, parameters, and
sensitivities are logged in a SimData object. It is a MATLAB structure
with the fields Species, Parameter, and Sensitivity. The information
in this property is redundant with the DataInfo property and is there
to give you a convenient means to access the information.

Characteristics
Applies to Object: SimData
Data type struct

Data values Default value for each field is 0.
Access Read-only

See Also StopTime, StopTimeType

6-34

DataInfo

Purpose Metadata labels for simulation data

Description The DataInfo property contains the metadata that label the columns of
the SimData object array. It is an n x 1 cell array of structures. The
ith cell contains metadata labeling the ith column of the SimData
object array.

The possible types of structures are as follows.

Type Fields

Species
Type: species
Name:
Compartment:
Units:

6-35

DataInfo

Type Fields

Parameter
Type: parameter
Name:
Reaction: <name of reaction that a parameter is scoped to,

or '' if parameter is scoped to model>
Units:

Sensitivity
Type: sensitivity
Name: <for example: d[x]/d[y]_0>
OutputType: <The type of the sensitivity output,

either 'species' or 'parameter'>
OutputName: <The name of the sensitivity output>
OutputQualifier: <The compartment or reaction for

the sensitivity output, for
species or parameters, respectively>

InputType: <The type of the sensitivity input,
either 'species' or 'parameter'>

InputName: <The name of the sensitivity input>
InputQualifier: <The compartment or reaction for

the sensitivity input, for
species or parameters, respectively>

Units:

Characteristics
Applies to Object: SimData
Data type n x 1 cell array of structs
Data values Default value is 0x1 cell array.
Access Read-only

See Also StopTime, StopTimeType

6-36

DataNames

Purpose Show names in SimData object

Description The DataNames property holds the names that label the columns of the
data matrix in the Data property. The property contains an nx1 array of
strings. The software provides this information for your convenience.

Characteristics
Applies to Object: SimData
Data type string array

Data values Default value is 0x1 cell array.
Access Read-only

See Also StopTime, StopTimeType

6-37

DefaultSpeciesDimension

Purpose Species dimension

Description The DefaultSpeciesDimension property specifies whether the
species dimensions are substance or concentration. If however,
you specify the species units in the InitialAmountUnits property,
these units define the species dimension regardless of the value in
DefaultSpeciesDimension. Thus, if DefaultSpeciesDimension is
concentration and you specify species units as molecule, the species
dimensions are evaluated as substance.

You can find DefaultSpeciesDimension in the CompileOptions
property.

When DefaultSpeciesDimension is set to substance, species
quantities ignore compartment capacity, unless capacity is explicitly
defined in an expression (reaction rate, rule, or event expression).

When DefaultSpeciesDimension is set to concentration, species
quantities are scaled for compartment capacity in reaction rate, rule,
or event expressions. CompartmentCapacity has a default value of 1,
thus when capacity and capacity unit are not defined, species amount is
equivalent to concentration.

For example, consider a reaction a + b > c. Using mass action
kinetics, the reaction rate is defined as a*b*k, where k is the rate
constant of the reaction. If you specify that initial amounts of a and b
are 0.01M and 0.005M respectively, then units of k are 1/(M*second).
If you specify k with another equivalent unit definition, for example,
1/[(moles/liter)*second], DimensionalAnalysis checks whether
the physical quantities match. If the physical quantities do not match,
you see an error and the model is not simulated.

If in the above example, you define initial amounts of a and b are
0.01 and 0.005 respectively, without specifying units, the compile
options check whether DefaultSpeciesDimension is substance or
concentration. If the DefaultSpeciesDimension is concentration,
and the reaction rate dimensions resolve to concentration/time the
model is simulated with species amounts scaled for compartment
capacity, and the solver returns the species values in concentration.

6-38

DefaultSpeciesDimension

Valid physical quantities for reaction rates are amount/time, mass/time,
or concentration/time.

Characteristics
Applies to Object: CompileOptions (in configset

object)
Data type char string

Data values concentration or substance. Default value
is concentration.

Access Read/write

See Also CompileOptions, DimensionalAnalysis, get, getconfigset,
sbiosimulate, set

6-39

DimensionalAnalysis

Purpose Perform dimensional analysis on model

Description The DimensionalAnalysis property specifies whether to perform
dimensional analysis on the model before simulation. It is a property of
the CompileOptions object. CompileOptions holds the model’s compile
time options and is the object property of the configset object. When
DimensionalAnalysis is set to true, the SimBiology software checks
whether the physical quantities of the units involved in reactions and
rules, match and are applicable.

For example, consider a reaction a + b > c. Using mass action
kinetics, the reaction rate is defined as a*b*k, where k is the rate
constant of the reaction. If you specify that initial amounts of a and b
are 0.01M and 0.005M respectively, then units of k are 1/(M*second).
If you specify k with another equivalent unit definition, for example,
1/[(moles/liter)*second], DimensionalAnalysis checks whether
the physical quantities match. If the physical quantities do not match,
you see an error and the model is not simulated.

Unit conversion requires dimensional analysis. If DimensionalAnalysis
is off, and you turn UnitConversion on, then DimensionalAnalysis
is turned on automatically. If UnitConversion is on and you turn
off DimensionalAnalysis, then UnitConversion is turned off
automatically.

If you have MATLAB function calls in your model, dimensional analysis
ignores any expressions containing function calls and generates a
warning.

Valid physical quantities for reaction rates are amount/time, mass/time,
or concentration/time.

Characteristics
Applies to Object: CompileOptions (in configset

object)
Data type boolean

6-40

DimensionalAnalysis

Data values true or false. Default value is true.
Access Read/write

Examples This example shows how to retrieve and set DimensionalAnalysis
from the default true to false in the default configuration set in a
model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator

Model Components:
Models: 0
Parameters: 0
Reactions: 42
Rules: 0
Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)
SolverType: ode15s
StopTime: 10.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

RuntimeOptions:
StatesToLog: all

6-41

DimensionalAnalysis

CompileOptions:
UnitConversion: true
DimensionalAnalysis: true

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')

Compile Settings:

UnitConversion: true
DimensionalAnalysis: true

4 Assign a value of false to DimensionalAnalysis.

set(optionsObj,'DimensionalAnalysis', false)

See Also get, getconfigset, sbiosimulate, set

6-42

ErrorTolerance

Purpose Specify explicit or implicit tau error tolerance

Description The ErrorTolerance property specifies the error tolerance for the
explicit tau and implicit tau stochastic solvers. It is a property of the
SolverOptions object. SolverOptions is a property of the configset
object. The explicit and implicit tau solvers automatically chooses a
time interval (tau) such that the relative change in the propensity
function for each reaction is less than the user-specified error tolerance.

A propensity function describes the probability that the reaction will
occur in the next smallest time interval, given the conditions and
constraints.

If the error tolerance is too large, there may not be a solution to the
problem and that could lead to an error. If the error tolerance is small,
the solver will take more steps than when the error tolerance is large
leading to longer simulation times. The error tolerance should be
adjusted depending upon the problem, but a good value for the error
tolerance is between 1 % to 5 %.

Characteristics
Applies to Object: SolverOptions
Data type double

Data values >0, <1. The default is 3e-2.
Access Read/write

Examples This example shows how to change ErrorTolerance settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the ErrorTolerance to 1e-8.

6-43

ErrorTolerance

set(configsetObj.SolverOptions, 'ErrorTolerance', 5.0e-2);
get(configsetObj.SolverOptions, 'ErrorTolerance')

ans =

5.000000e-002

See Also LogDecimation, RandomState

6-44

EventFcns

Purpose Event expression

Description Property of the event object that defines what occurs when the event is
triggered. Specify a cell array of strings.

EventFcns can be any MATLAB assignment or expression that defines
what is executed when the event is triggered. All EventFcn expressions
are assignments of the form 'objectname = expression', where
objectname is the name of a valid SimBiology object.

For more information about how SimBiology handles events, see “How
Events Are Evaluated” in the SimBiology User’s Guide documentation.
For examples of event functions, see “Specifying Event Functions” in
the SimBiology User’s Guide documentation.

Characteristics
Applies to Object: event
Data type Cell array of strings
Data values EventFcn strings '' (empty)
Access Read/write

Examples 1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator');
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the EventFcns property of the event object.

set(eventObj, 'EventFcns', {'pA = OpA','mA = pol'});

3 Get the EventFcns property.

get(eventObj, 'EventFcns')

See Also Event object, Trigger

6-45

Events

Purpose Contain all event objects

Description Property to indicate events in a model object. Read-only array of Event
objects.

An event defines an action when a defined condition is met. For
example, the quantity of a species may double when the quantity of
species B is 100. An event is triggered when the conditions specified
in the event are met by the model. See “Changing Model Component
Values Using Events” in the SimBiology User’s Guide documentation
for more information.

Add an event to a Model object with the method addevent method and
remove an event with the delete method. See Event object for more
information.

You can view event object properties with the get command and modify
the properties with the set command.

Characteristics
Applies to Object: model
Data type Array of event objects
Data values Event object. The default is []

(empty).
Access Read-only

Examples 1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator')
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Get a list of properties for an event object.

get(modelObj.Events(1));

Or

6-46

Events

get(eventObj)

MATLAB displays a list of event properties.

Active: 1
Annotation: ''
EventFcns: {'OpC = 200'}

Name: ''
Notes: ''

Parent: [1x1 SimBiology.Model]
Tag: ''

Trigger: 'time >= 5'
TriggerDelay: 0

TriggerDelayUnits: 'second'
Type: 'event'

UserData: []

See Also EventFcns, Event object, Model object, Trigger

6-47

Exponent

Purpose Exponent value of unit prefix

Description Exponent shows the value of 10^Exponent that defines the numerical
value of the unit prefix Name. You can use the unit prefix in conjunction
with any built-in or user-defined units. For example, for the unit mole,
specify as picomole to use the Exponent, -12.

Characteristics
Applies to Object: Unit prefix
Data type double

Data values Real number. Default is 0.
Access Read/write

Examples This example shows you how to create a user-defined unit prefix, add it
to the user-defined library, and query the Exponent property.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);

2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);

3 Query the Exponent property.

get(unitprefixObj1, 'Exponent')

ans =

15

See Also get, sbioaddtolibrary, sbiounitprefix, set, UnitPrefix object

6-48

Expression

Purpose Expression to determine reaction rate equation

Description The Expression property indicates the mathematical expression that
is used to determine the ReactionRate property of the reaction object.
Expression is a reaction rate expression assigned by the abstract
kinetic law used by the kinetic law object. The abstract kinetic law being
used is indicated by the property KineticLawName. You can configure
Expression for user-defined abstract kinetic laws, but not for built-in
abstract kinetic laws. Expression is read only for kinetic law objects.

Abstract Kinetic Law

The abstract kinetic law provides a mechanism for applying a
specific rate law to multiple reactions. It acts as a mapping template
for the reaction rate. The abstract kinetic law is defined by a reaction
rate expression, which is defined in the property Expression, and the
species and parameter variables used in the expression. The species
variables are defined in the SpeciesVariables property, and the
parameter variables are defined in the ParameterVariablesproperty
of the kinetic law object.

If a reaction is using an abstract kinetic law, the ReactionRate
property of the reaction object shows the result of a mapping from
an abstract kinetic law. To determine ReactionRate, the species
variables and parameter variables that participate in the reaction
rate should be clearly mapped in the kinetic law for the reaction.
In this case, SimBiology software determines the ReactionRate by
using the Expression property of the abstract kinetic law object,
and by mapping SpeciesVariableNames to SpeciesVariables and
ParameterVariableNames to ParameterVariables.

For example, the abstract kinetic law Henri-Michaelis-Menten has the
Expression , Vm*S/(Km+S), where Vm and Km are defined as parameters
in the ParameterVariables property of the abstract kinetic law object,
and S is defined as a species in the SpeciesVariable property of the
abstract kinetic law object.

6-49

Expression

By applying the abstract kinetic law Henri-Michaelis-Menten to
a reaction A -> B with Va mapping to Vm, A mapping to S, and Ka
mapping to Km, the rate equation for the reaction becomes Va*A/(Ka+A) .

The exact expression of a reaction using MassAction kinetic law varies
depending upon the number of reactants. Thus, for mass action kinetics
the Expression property is set to MassAction because in general for
mass action kinetics the reaction rate is defined as

r k Si m

i

n
i

r

=
=
∏[]

1

where [Si] is the concentration of the ith reactant, mi is the
stoichiometric coefficient of [Si], nr is the number of reactants, and k is
the mass action reaction rate constant.

SimBiology software comes with some built-in kinetic laws. Users
can also define their own abstract kinetic laws. To find the list of
available kinetic laws, use the sbiowhos -kineticlaw command
(sbiowhos). You can create an abstract kinetic law with the
function sbioabstractkineticlaw and add it to the library using
sbioaddtolibrary.

Characteristics
Applies to Objects: abstract kineticlaw,

kineticlaw
Data type char string

Data values Defined by abstract kinetic law
Access Read-only in kinetic law object.

Read/write in user-defined
abstract kinetic law.

Examples Example 1

Example with Henri-Michaelis-Menten kinetics

6-50

Expression

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the Expression property for the kinetic law object is
Henri-Michaelis-Menten.

get (kineticlawObj, 'Expression')

MATLAB returns:

ans =

Vm*S/(Km + S)

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) and one species variable (S) that you should
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with names
Vm_d, Km_d, and assign the objects’ Parent property value to the
kineticlawObj. The species object with Name a is created when
reactionObjis created and need not be redefined.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'a'});

6 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

6-51

Expression

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)

Example 2

Example with Mass Action kinetics.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
get(kineticlawObj, 'Expression')

MATLAB returns:

ans =

MassAction

3 Assign the rate constant for the reaction.

set (kineticlawObj, 'ParameterVariablenames', 'k');

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a*b

6-52

Expression

See Also KineticLawName, Parameters, ParameterVariableNames,
ParameterVariables, ReactionRate, sbioaddtolibrary, sbiowhos,
SpeciesVariableNames, SpeciesVariables

6-53

InitialAmount

Purpose Species initial amount

Description The InitialAmount property indicates the initial quantity of the
SimBiology species object. InitialAmount is the quantity of the species
before the simulation starts.

Characteristics
Applies to Object: species
Data type double

Data values Positive real number. Default value is 0.
Access Read/write

Examples Add a species to a model and set the initial amount of the species.

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add the species object named glucose.

speciesObj = addspecies (modelObj, 'glucose');

3 Set the initial amount to 100 and verify.

set (speciesObj, 'InitialAmount',100);
get (speciesObj, 'InitialAmount')

MATLAB returns:

ans =

100

See Also addspecies, InitialAmountUnits

6-54

InitialAmountUnits

Purpose Species initial amount units

Description The InitialAmountUnits property indicates the unit definition for the
InitialAmount property of a species object. InitialAmountUnits can
be one of the built-in units. To get a list of the defined units, use the
sbioshowunits function. If InitialAmountUnits changes from one unit
definition to another, InitialAmount does not automatically convert to
the new units. The sbioconvertunits function does this conversion.
To add a user-defined unit to the list, see sbioregisterunit.

See DefaultSpeciesDimension for more information on specifying
dimensions for species quantities. InitialAmountUnits must have
corresponding dimensions to CapacityUnits. For example, if the
CapacityUnits are meter2, then species must be amount/meter2 or
amount.

Characteristics
Applies to Object: species
Data type char string

Data values Units from library with dimensions of amount,
amount/length, amount/area, or amount/volume.
Default is '' (empty).

Access Read/write

Examples 1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
compObj = addcompartment(modelObj, 'cell');

2 Add a species object named glucose.

speciesObj = addspecies (compObj, 'glucose');

3 Set the initial amount to 100, InitialAmountUnits to molecule,
and verify.

6-55

InitialAmountUnits

set (speciesObj,'InitialAmountUnits','molecule');
get (speciesObj,'InitialAmountUnits')

MATLAB returns:

ans =

molecule

See Also DefaultSpeciesDimension, InitialAmount, sbioconvertunits,
sbioregisterunit, sbioshowunits

6-56

KineticLaw

Purpose Show kinetic law used for ReactionRate

Description The KineticLaw property shows the kinetic law that determines
the reaction rate specified in the ReactionRate property of the
reaction object. This property shows the kinetic law used to define
ReactionRate.

KineticLaw can be configured with the addkineticlaw method.
The addkineticlaw function configures the ReactionRate based
on the KineticLaw and the species and parameters specified in
the kinetic law object properties SpeciesVariableNames and
ParameterVariableNames. SpeciesVariableNames are determined
automatically for mass action kinetics.

If the reaction is updated, the ReactionRate is automatically
updated only for mass action kinetics. For all other kinetics, the
SpeciesVariableNames property of the kinetic law object should be
reconfigured.

Characteristics
Applies to Object: reaction
Data type Kinetic law object
Data values Kinetic law object. Default is [] (empty).
Access Read-only

Example Example with Henri-Michaelis-Menten kinetics

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

6-57

KineticLaw

3 Verify that the KineticLaw property for the reaction object is
Henri-Michaelis-Menten.

get (reactionObj, 'KineticLaw')

MATLAB returns:

SimBiology Kinetic Law Array

Index: KineticLawName:
1 Henri-Michaelis-Menten

See Also KineticLawName, Parameters, ParameterVariableNames,
ReactionRate, SpeciesVariableNames

6-58

KineticLawName

Purpose Name of kinetic law applied to reaction

Description The KineticLawName property of the kinetic law object indicates
the name of the abstract kinetic law applied to the reaction.
KineticLawName can be any valid name from the built-in or user-defined
abstract kinetic law library. See “Abstract Kinetic Law” on page 6-49
for a definition and more information.

You can find the KineticLawName list in the abstract kinetic
law library by using the command sbiowhos -kineticlaw
(sbiowhos). You can create an abstract kinetic law with the
function sbioabstractkineticlaw and add it to the library using
sbioaddtolibrary.

Characteristics
Applies to Object: kineticlaw
Data type char string

Data values char string defined by abstract
kinetic law

Access Read-only

Examples 1 Create a model object, add a reaction object, and define a kinetic
law for the reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b -> c + d');

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

2 Verify the KineticLawName of kineticlawObj.

get (kineticlawObj, 'KineticLawName')

MATLAB returns:

ans =

6-59

KineticLawName

Henri-Michaelis-Menten

See Also
Expression, Parameters, ParameterVariableNames,
ParameterVariables, ReactionRate, sbioaddtolibrary, sbiowhos,
SpeciesVariables, SpeciesVariableNames

6-60

LogDecimation

Purpose Specify recorded simulation output frequency

Description The LogDecimation property defines how often the simulation data
is recorded as output. It is a property of the SolverOptions object.
SolverOptions is a property of the configset object. LogDecimation
is available for ssa, expltau, and inmpltau solvers.

Use LogDecimation to specify how frequently you want to record the
output of the simulation. For example, if the LogDecimation is set
to 1, for the command (t,x) = sbiosimulate(modelObj), at each
simulation step the time will be logged in t and the quantity of each
logged species will be logged as a row in x. If LogDecimation is 10, then
every 10th simulation step will be logged in t and x.

Characteristics
Applies to Object: SolverOptions
Data type int

Data values >0. Default is 1.
Access Read/write

Examples This example shows how to change LogDecimation settings.

1 Retrieve the configset object from the modelObj, and change the
SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the LogDecimation to 10.

set(configsetObj.SolverOptions, 'LogDecimation', 10);
get(configsetObj.SolverOptions, 'LogDecimation')

ans =

6-61

LogDecimation

10

See Also ErrorTolerance, RandomState

6-62

MaxIterations

Purpose Specify nonlinear solver maximum iterations in implicit tau

Description The MaxIterations property specifies the maximum number of
iterations for the nonlinear solver in impltau. It is a property of the
SolverOptions object. SolverOptions is a property of the configset
object.

The implicit tau solver in SimBiology software internally uses a
nonlinear solver to solve a set of algebraic nonlinear equations at every
simulation step. Starting with an initial guess at the solution, the
nonlinear solver iteratively tries to find the solution to the algebraic
equations. The closer the initial guess is to the solution, the fewer
the iterations the nonlinear solver will take before it finds a solution.
MaxIterations specifies the maximum number of iterations the
nonlinear solver should take before it issues a “failed to converge” error.
If you get this error, during simulation, try increasing MaxIterations.
The default value of MaxIterations is 15.

Characteristics
Applies to Object: SolverOptions
Data type int

Data values >0. Default is 15.
Access Read/write

Examples This example shows how to change MaxIterations settings.

1 Retrieve the configset object from the modelObj, and change the
SolverType to impltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'impltau');

2 Change the MaxIterations to 25.

set(configsetObj.SolverOptions, 'MaxIterations', 25);

6-63

MaxIterations

get(configsetObj.SolverOptions, 'MaxIterations')

ans =

25

See Also ErrorTolerance, LogDecimation, RandomState

6-64

MaxStep

Purpose Specify upper bound on solver step size

Description The MaxStep property specifies the size of the bounds on the size of
the time steps. If the differential equation has periodic coefficients or
solutions, it might be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver does not enlarge
the time step too much and step over a period of interest. For more
information on MaxStep, see odeset in the MATLAB documentation.

Characteristics
Applies to Object: SolverOptions
Data type Positive scalar

Data values {0.1*abs(t0-tf)}. Default is []
(empty).

Access Read/write

See Also SimBiology property RelativeTolerance

MATLAB function odeset

6-65

ModelName

Purpose Name of model simulated

Description The ModelName property shows the name of the model for which the
SimData object contains the simulation data.

Characteristics
Applies to Object: SimData
Data type string

Data values Default value is '' (empty).
Access Read-only

See Also Data, DataInfo

6-66

Models

Purpose Contain all model objects

Note The Models property will be removed in a future version.
Submodels will not be supported in future releases. Use the function
sbioupdate to convert submodels into models.

Description The Models property shows the submodels in a model object or models
in the SimBiology root. Read-only array of model objects. SimBiology
has a hierarchical organization. A top-level model object has the
SimBiology root as its Parent. Model objects with another model object
as Parent are submodels. For a model object to access configset, kinetic
law, reaction, rule and species objects, you must assign the model object
as Parent in these objects. Parameter objects can have a model object or
kinetic law object as Parent. You can display all the component objects
with modelObj.Models or get (modelObj, 'Models').

The components of a submodel are contained within the submodel. In
addition, a submodel object can reference parameter variables that have
been assigned to the model object. For example, a parameter defined
within a submodel cannot be used by the parent model or another model
object. A submodel object however, can use the parameters assigned
to the model object.

You can add a submodel to a model object with the method addmodel
and remove it from its parent with the method delete.

Characteristics
Applies to Objects: model, root
Data type Array of model objects
Data values Model object. Default is [] (empty).
Access Read-only

See Also sbiomodel, sbioupdate

6-67

Multiplier

Purpose Relationship between defined unit and base unit

Description The Multiplier is the numerical value that defines the relationship
between the unit Name and the base unit as a product of the
Multiplier and the base unit. For example, in Celsius =
(5/9)*(Fahrenheit-32); Multiplier is 5/9 and Offset is -32. For 1
mole = 6.0221e23*molecule, the Multiplier is 6.0221e23.

Characteristics
Applies to Object: Unit
Data type double

Data values Nonzero real number. Default value is 1.
Access Read/write

Examples This example shows how to create a user-defined unit, add it to the
user-defined library, and query the library.

1 Create a user-defined unit called usermole, whose composition is
molecule and Multiplier property is 6.0221e23.

unitObj = sbiounit('usermole', 'molecule', 6.0221e23);

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

3 Query the Multiplier property.

get(unitObj, 'Multiplier')

ans =

1/molarity*second

See Also Composition, get, Offset, sbiounit, set

6-68

Name

Purpose Specify name of object

Description The Name property identifies a SimBiology object. Compartments,
species, parameters, and model objects can be referenced by other
objects using the Name property, therefore Name must be unique for
these objects. However, species names need only be unique within each
compartment. Parameter names must be unique within a model (if at
the model level), or within each kinetic law (if at the kinetic law level).
This means that you can have nonunique species names if the species
are in different compartments, and nonunique parameter names if the
parameters are in different kinetic laws or at different levels. Note
that having nonunique parameter names can cause the model to have
shadowed parameters and that may not be best modeling practice. For
more information on levels of parameters, see “Definition of Parameter
Scope” in the SimBiology User’s Guide documentation.

Use the function sbioselect to find an object with the same Name
property value.

In addition, note the following constraints and reserved characters for
the Name property in objects:

• Model names cannot be empty.

• Parameter names cannot be empty, or have the name time.

• If you have a parameter, a species, or compartment name that is not
a valid MATLAB variable name, when you write an event function,
an event trigger, a reaction, reaction rate equation, or a rule you
must enclose that name in brackets. For example, enclose [DNA
polymerase+] in brackets. In addition, if you have the same species
in multiple compartments you must qualify the species with the
compartment name, for example, nucleus.[DNA polymerase+],
[nuclear complex].[DNA polymerase+].

• Species and compartment names cannot be empty, and note the
following reserved words, characters, and constraints:

6-69

Name

- The literal words null and time. Note that you can specify species
names with these words contained within the name. For example,
nullaminoacids or nullnucleotides.

- The characters ->, < >, [, and].

For more information on valid MATLAB variable names, see
genvarname and isvarname.

Characteristics
Applies to Objects: abstract kinetic law, configuration

set, compartment, event, kinetic law, model,
parameter, reaction, rule, species, unit, or
variant

Data type char string

Data values Any char string except reserved words and
characters

Access Read/write

Example 1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');

2 Add a reaction object to the model object. Note the use of brackets
because the names are not valid MATLAB variable names.

reactionObj = addreaction(modelObj, '[Aspartic acid] -> [beta-Aspartyl-PO4]')

MATLAB returns:

SimBiology Reaction Array

Index: Reaction:
1 [Aspartic acid] -> [beta-Aspartyl-PO4]

3 Set the reaction Name and verify.

6-70

Name

set (reactionObj, 'Name', 'Aspartate kinase reaction');
get (reactionObj, 'Name')

MATLAB returns:

ans =

Aspartate kinase reaction

See Also addcompartment, addkineticlaw, addmodel, addparameter,
addreaction, addrule, addspecies, sbiomodel, sbiounit,
sbiounitprefix

6-71

Normalization

Purpose Specify normalization type for sensitivity analysis

Description Normalization is a property of the SensitivityAnalysisOptions
object. SensitivityAnalysisOptions is a property of the configuration
set object. Use Normalization to specify the normalization for the
computed sensitivities.

The following values let you specify the type of normalization. The
examples show you how sensitivities of a species x with respect to a
parameter k are calculated for each normalization type:

• 'None' specifies no normalization.

dx t
dk

()

• 'Half' specifies normalization relative to the numerator (species
quantity) only.

1
x t

dx t
dk()

()⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

• 'Full' specifies that the data should be made dimensionless.

k
x t

dx t
dk()

()⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type enum

Data values 'None', 'Half', 'Full'. Default is 'None'.
Access Read/write

See Also ParameterInputFactors, SensitivityAnalysis,
SensitivityAnalysisOptions, SpeciesInputFactors

6-72

Notes

Purpose HTML text describing SimBiology object

Description Use the Notes property of an object to store comments about the object.
You can include HTML tagging in the notes to render formatted text
in the SimBiology desktop.

Characteristics
Applies to Objects: compartment, kinetic law, model,

parameter, reaction, rule, species, unit, or unit
prefix

Data type char string

Data values Any char string

Access Read/write

Example 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Write notes for the model object.

set (modelObj, 'notes', '09/01/05 experimental data')

3 Verify the assignment.

get (modelObj, 'notes')

MATLAB returns:

ans =

09/01/05 experimental data

See Also addkineticlaw, addmodel, addparameter, addreaction, addrule,
addspecies, sbiomodel, sbiounit, sbiounitprefix

6-73

Offset

Purpose Unit composition modifier

Description The Offset is the numerical value by which the unit composition
is modified from the base unit. For example, Celsius =
(5/9)*(Fahrenheit-32); Multiplier is 5/9 and Offset is -32.

Characteristics
Applies to Object: Unit
Data type double

Data values Real number. Default is 0.
Access Read/write

Examples This example shows how to create a user-defined unit, add it to the
user-defined library, and query the library.

1 Create a user-defined unit called celsius2, whose composition refers
to fahrenheit, Multiplier property is 9/5, and Offset property
is 32.

unitObj = sbiounit('celsius2','fahrenheit',9/5,32);

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

3 Query the Offset property.

get(unitObj, 'Offset')

ans =

32

See Also Composition, get, Multiplier, sbioaddtolibrary, sbioshowunits,
sbiounit, set

6-74

Owner

Purpose Owning compartment

Description Owner shows you the SimBiology compartment object that owns
the compartment object. In the compartment object, the Owner
property shows you whether the compartment resides within another
compartment. The Compartments property indicates whether other
compartments reside within the compartment. You can add a
compartment object using the method addcompartment.

Characteristics
Applies to Object: compartment
Data type char string

Data values Name of compartment object. Default is [].
Access Read-only

Examples 1 Create a model object named modelObj.

modelObj = sbiomodel('cell');

2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');
compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');

4 Display the Owner property in the compartment objects.

get(compartmentObj3, 'Owner')

The result shows you the owning compartment and its components:

SimBiology Compartment - mitochondrion

6-75

Owner

Compartment Components:
Capacity: 1
CapacityUnits:
Compartments: 1
ConstantCapacity: true
Owner:
Species: 0

5 Change the owning compartment.

set(compartmentObj3, 'Owner', compartmentObj1)

See Also Compartments, Parent

6-76

ParameterInputFactors

Purpose Specify parameter input factors for sensitivity analysis

Description ParameterInputFactors is a property of the
SensitivityAnalysisOptions object. SensitivityAnalysisOptions
is a property of the configuration set object. Use
ParameterInputFactors to specify the parameters with respect to
which you want to compute the sensitivities of the species states in your
model. When you simulate a model with SensitivityAnalysis enabled
in the active configuration set object, sensitivity analysis returns the
computed sensitivities of the species specified in StatesToLog. For
a description of the output, see the SensitivityAnalysisOptions
property description.

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type Parameter object or array of parameter

objects
Data values Parameter object array. Default is []

(empty).
Access Read/write

Examples This example shows how to set ParameterInputFactors for sensitivity
analysis.

1 Import the radio decay model from the SimBiology demos.

modelObj = sbmlimport('radiodecay');

2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);

3 Add a parameter to the ParameterInputFactors property and
display. Use the sbioselect function to retrieve the parameter
object from the model.

6-77

ParameterInputFactors

set(configsetObj.SensitivityAnalysisOptions,'ParameterInputFactors', ...

sbioselect(modelObj, 'Type', 'parameter', 'Name', 'c'));

get (configsetObj.SensitivityAnalysisOptions, 'ParameterInputFactors')

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 c 0.5 1/second

See Also sbioselect, SensitivityAnalysis, SensitivityAnalysisOptions,
SpeciesInputFactors

6-78

Parameters

Purpose Array of parameter objects

Description The Parameters property indicates the parameters in a Model or
KineticLaw object. Read-only array of Parameter objects. Display with
modelObj.Parameters or get(modelObj, 'Parameters').

The scope of a parameter object is hierarchical and is defined by the
parameter’s parent. If a parameter is defined with a kinetic law object
as its parent, then only the kinetic law object can use the parameter.
If a parameter object is defined with a model object as its parent,
then components such as rules, events, and kinetic laws (reaction rate
equations) can use the parameter.

You can add a parameter to a model object, or kinetic law object with
the method addparameter and delete it with the method delete.

You can view parameter object properties with the get command and
configure properties with the set command.

Characteristics
Applies to Objects: model, kineticlaw

Data type Array of parameter objects
Data values Parameter objects. Default value is [] (empty).
Access Read-only

Examples 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

3 Add a parameter and assign it to the kinetic law object
(kineticlawObj);.

6-79

Parameters

parameterObj1 = addparameter (kineticlawObj, 'K1');
get (kineticlawObj, 'Parameters')

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K1 1

4 Add a parameter and assign it to the model object (modelObj);

parameterObj1 = addparameter(modelObj, 'K2');
get(modelObj, 'Parameters')
SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K2 1

See Also addparameter, delete, get, sbioparameter, set

6-80

ParameterVariableNames

Purpose Cell array of reaction rate parameters

Description The ParameterVariableNames property shows the parameters used by
the kinetic law object to determine the ReactionRate equation in the
reaction object. Use setparameter to assign ParameterVariableNames.
When you assign species to ParameterVariableNames, SimBiology
software maps these parameter names to ParameterVariables in the
kinetic law object.

If the reaction is using a kinetic law, the ReactionRate property
of a reaction object shows the result of a mapping from an abstract
kinetic law. The ReactionRate is determined by the kinetic law
object Expression property by mapping ParameterVariableNames to
ParameterVariables and SpeciesVariableNames to SpeciesVariables.

Characteristics
Applies to Object: kineticlaw
Data type Cell array of strings
Data values Cell array of parameters
Access Read/write

Examples Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

6-81

ParameterVariableNames

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

ans =

'Va' 'Ka'

See Also Expression, ParameterVariables, ReactionRate, setparameter,
SpeciesVariables, SpeciesVariableNames

6-82

ParameterVariables

Purpose Parameters in abstract kinetic law

Description The ParameterVariables property shows the parameter variables that
are used in the Expression property of the abstract kinetic law object.
Used to determine the ReactionRate equation in the reaction object.
Use the MATLAB function set to assign ParameterVariables to an
abstract kinetic law. For more information, see abstract kinetic law.

Characteristics
Applies to Objects: abstract kinetic law, kineticlaw
Data type Cell array of strings
Data values Defined by abstract kinetic law
Access Read/write in abstract kinetic law. Read-only in

kinetic law.

Example Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type
'Henri-Michaelis-Menten' .

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables. To set these variables:

get (kineticlawObj, 'ParameterVariables')

MATLAB returns:

6-83

ParameterVariables

ans =

'Vm' 'Km'

See Also Expression, ParameterVariableNames, ReactionRate, set,
setparameter, SpeciesVariables, SpeciesVariableNames

6-84

Parent

Purpose Indicate parent object

Description The Parent property indicates the parent object for a SimBiology object
(read-only). The Parent property indicates accessibility of the object.
The object is accessible to the Parent object and other objects within
the Parent object. The value of Parent depends on the type of object
and how it was created. All models always have the SimBiology root
as the Parent.

More Information

The following table shows you the different objects and the possible
Parent value.

Object Parent

abstract kinetic law • [] (empty) until added to
library

• root object upon addition to
library

compartment model object
event model object or [] (empty)
kinetic law reaction object
model root object
parameter model object, kinetic law object,

or [] (empty)
reaction model object or [] (empty)
rule model object or [] (empty)
species compartment

6-85

Parent

Object Parent

variant model object or [] (empty)
unit and unit prefixes • [] (empty) until added to

library

• root object upon addition to
library

Characteristics
Applies to Objects: abstract kinetic law, compartment,

event, kinetic law, model, parameter, reaction,
rule, species, variant, unit, or unit prefix

Data type Object
Data values SimBiology component object or [] (empty)
Access Read-only

See Also addkineticlaw, addmodel, addparameter, addreaction, sbiomodel

6-86

Products

Purpose Array of reaction products

Description The Products property contains an array of SimBiology.Species
objects.

Products is a 1-by-n species object array that indicates the species that
are changed by the reaction. If the Reaction property is modified to use
a different species, the Products property is updated accordingly.

You can add product species to the reaction with addproduct function.
You can remove product species from the reaction with rmproduct. You
can also update reaction products by setting the Reaction property
with the function set.

Characteristics
Applies to Object: reaction
Data type Array of objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 Verify the assignment.

productsObj = get(reactionObj, 'Products')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:

6-87

Products

1 unnamed c 0
2 unnamed d 0

See Also addkineticlaw, addproduct, addspecies, rmproduct

6-88

RandomState

Purpose Set random number generator

Description The RandomState property sets the random number generator for
the stochastic solvers. It is a property of the SolverOptions object.
SolverOptions is a property of the configset object.

SimBiology software uses a pseudorandom number generator. The
sequence of numbers generated is determined by the state of the
generator, which can be specified by the integer RandomState. If
RandomState is set to integer J, the random number generator
is initialized to its Jth state. The random number generator can
generate all the floating-point numbers in the closed interval
[2^(-53), 1-2^(-53)]. Theoretically, it can generate over 2^1492
values before repeating itself. But for a given state, the sequence of
numbers generated will be the same. To change the sequence, change
RandomState. SimBiology software resets the state at startup. The
default value of RandomState is [].

Characteristics
Applies to Objects: SolverOptions for SSA, expltau,

impltau

Data type int

Data values Default is [] (empty).
Access Read/write

Examples This example shows how to change RandomState settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the Randomstate to 5.

6-89

RandomState

set(configsetObj.SolverOptions, 'RandomState', 5);
get(configsetObj.SolverOptions, 'RandomState'))

ans =

5

See Also ErrorTolerance, LogDecimation, MaxIterations

6-90

Reactants

Purpose Array of reaction reactants

Description The Reactants property is a 1-by-n species object array of reactants
in the reaction. If the Reaction property is modified to use a different
reactant, the Reactants property will be updated accordingly.

You can add reactant species to the reaction with the addreactant
method.

You can remove reactant species from the reaction with the rmreactant
method. You can also update reactants by setting the Reaction property
with the function set.

Characteristics
Applies to Object: reaction
Data type Species object or array of species objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 View the reactants for reactionObj.

get(reactionObj, 'Reactants')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
1 unnamed a 0

6-91

Reactants

2 unnamed b 0

See Also addreactant, addreaction, addspecies, rmreactant

6-92

Reaction

Purpose Reaction object reaction

Description Property to indicate the reaction represented in the reaction object.
Indicates the chemical reaction that can change the amount of one or
more species, for example, 'A + B > C'. This property is different
from the model object property called Reactions.

See addreaction for more information on how the Reaction property is
set.

Characteristics
Applies to Object: reaction
Data type char string

Data values Valid reaction string. Default is '' (empty).
Access Read/write

Examples 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reaction property records the input.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + b -> c + d

See Also addreaction, sbioreaction

6-93

ReactionRate

Purpose Reaction rate equation in reaction object

Description The ReactionRate property defines the reaction rate equation. You
can define a ReactionRate with or without the KineticLaw property.
KineticLaw defines the type of reaction rate. The addkineticlaw
function configures the ReactionRate based on the KineticLaw and the
species and parameters specified in the kinetic law object properties
SpeciesVariableNames and ParameterVariableNames.

The reaction takes place in the reverse direction if the Reversible
property is true. This is reflected in ReactionRate. The ReactionRate
includes the forward and reverse rate if reversible.

You can specify ReactionRate without KineticLaw. Use the set
function to specify the reaction rate equation. SimBiology software adds
species variables while creating reactionObj using the addreaction
method. You must add the parameter variables (to the modelObj in
this case). See the example below.

After you specify the ReactionRate without KineticLaw and
you later configure the reactionObj to use KineticLaw, the
ReactionRate is unset until you specify SpeciesVariableNames and
ParameterVariableNames.

Characteristics
Applies to Object: reaction
Data type char string

Data values Reaction rate string. Default is '' (empty).
Access Read/write

Examples Example 1

Create a model, add a reaction, and assign the expression for the
reaction rate equation.

1 Create a model object, and then add a reaction object.

6-94

ReactionRate

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) and one species variable (S) that you should
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with names
Vm_d and Km_d and assign them to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d + a)

Example 2

Create a model, add a reaction, and specify ReactionRate without a
kinetic law.

6-95

ReactionRate

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a + b -> c + d');

2 Specify ReactionRate and verify the assignment.

set (reactionObj, 'ReactionRate', 'k*a');
get(reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a

3 You cannot simulate the model until you add the parameter k to
the modelObj.

parameterObj = addparameter(modelObj, 'k');

SimBiology adds the parameter to the modelObj with default Value
= 1.0 for the parameter.

See Also addparameter, addreaction, Reversible, sbioparameter,
sbioreaction

6-96

Reactions

Purpose Array of reaction objects

Description Property to indicate the reactions in a Model object. Read-only array
of reaction objects.

A reaction object defines a chemical reaction that occurs between
species. The species for the reaction are defined in the Model object
property Species.

You can add a reaction to a model object with the method addreaction,
and you can remove a reaction from the model object with the method
delete.

Characteristics
Applies to Object: model
Data type Array of reaction objects
Data values Reaction object
Access Read-only

Example 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reactions property records the input.

get (modelObj, 'Reactions')

MATLAB returns:

SimBiology Reaction Array

Index: Reaction:
1 a + b -> c + d

See Also addreaction, delete, sbioreaction

6-97

RelativeTolerance

Purpose Specify allowable error relative to component

Description The RelativeTolerance property specifies the allowable error tolerance
relative to the state vector at each simulation step. The state vector
contains values for all the state variables, for example, species amounts
for all the species.

RelativeTolerance is a property of the SolverOptions
object. SolverOptions is a property of the configset object.
RelativeTolerance is available for the ode solvers ('ode45', 'ode23',
'ode113', 'ode15s', 'ode23s', 'ode23t', and 'ode23tb').

If you set the RelativeTolerance at 1e-2, you are specifying that an
error of 1% relative to each state value is acceptable at each simulation
step.

At each simulation step, the solver estimates the local error ei in the
ith state vector y. Simulation converges at that time step if ei satisfies
the following equation:

|ei|≤max(RelativeTolerance*|yi|,AbsoluteTolerance)

Thus at higher state values, convergence is determined by
RelativeTolerance. As the state values approach zero, convergence
is controlled by AbsoluteTolerance. The choice of values for
RelativeTolerance and AbsoluteTolerance will vary depending on
the problem. The default values should work for first trials of the
simulation; however if you want to optimize the solution, consider that
there is a trade-off between speed and accuracy. If the simulation
takes too long, you can increase the values of RelativeTolerance and
AbsoluteTolerance at the cost of some accuracy. If the results appear
to be inaccurate, you can decrease the tolerance values but this will
slow down the solver. If the magnitude of the state values is high, you
can try to decrease the relative tolerance to get more accurate results.

Characteristics
Applies to Object: SolverOptions
Data type double

6-98

RelativeTolerance

Data values >0, <1. Default is 1e-3.
Access Read/write

Examples This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'RelativeTolerance', 1.0e-6);
get(configsetObj.SolverOptions, 'RelativeTolerance')

ans =

1.0000e-006

See Also AbsoluteTolerance

6-99

Reversible

Purpose Specify whether reaction is reversible or irreversible

Description The Reversible property defines whether a reaction is reversible or
irreversible. The rate of the reaction is defined by the ReactionRate
property. For a reversible reaction, the reaction rate equation is the sum
of the rate of the forward and reverse reactions. The type of reaction
rate is defined by the KineticLaw property. If a reaction is changed from
reversible to irreversible or vice versa after KineticLaw is assigned, the
new ReactionRate is determined only if Type is MassAction. All other
Types result in unchanged ReactionRate. For MassAction, the first
parameter specified is assumed to be the rate of the forward reaction.

Characteristics
Applies to Object: reaction
Data type boolean

Data values true, false. Default value is false.
Access Read/write

Examples Create a model, add a reaction, and assign the expression for the
reaction rate equation.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Set the Reversible property for the reactionObj to true and verify
this setting.

set (reactionObj, 'Reversible', true)
get (reactionObj, 'Reversible')

MATLAB returns:

ans =

6-100

Reversible

1

MATLAB returns 1 for true and 0 for false.

In the next steps the example illustrates how the reaction rate
equation is assigned for reversible reactions.

3 Create a kinetic law object for the reaction object of the type
'MassAction'.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

reactionObj KineticLaw property is configured to kineticlawObj.

4 The 'MassAction' kinetic law for reversible reactions has two
parameter variables ('Forward Rate Parameter' and 'Reverse
Rate Parameter') that you should set. The species variables for
MassAction are automatically determined. To set the parameter
variables, first create the parameter variables as parameter objects
(parameterObj1, parameterObj2) named Kf and Kr and assign the
object to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Kf');
parameterObj2 = addparameter(kineticlawObj, 'Kr');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Kf' 'Kr'});

6 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Kf*a*b - Kr*c*d

6-101

Reversible

See Also addparameter, addreactant, addreaction, ParameterVariableNames,
ReactionRate, sbioreaction

6-102

Rule

Purpose Specify species and parameter interactions

Description The Rule property contains a rule that defines how certain species and
parameters should interact with one another. For example, a rule could
state that the total number of species A and species B must be some
value. Rule is a MATLAB expression that defines the change in the
species object quantity or a parameter object Value when the rule is
evaluated.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules, see addrule and RuleType.

Characteristics
Applies to Object: rule
Data type char string

Data values char string defined as species or parameter
objects. Default is empty.

Access Read/write

Example 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Add a rule.

ruleObj = addrule(modelObj, '10-a+b')

MATLAB returns:

SimBiology Rule Array

Index: RuleType: Rule:
1 algebraic 10-a+b

6-103

Rule

See Also addrule, delete, sbiorule

6-104

RuleType

Purpose Specify type of rule for rule object

Description The RuleType property indicates the type of rule defined by the rule
object. A Rule object defines how certain species, parameters, and
compartments should interact with one another. For example, a rule
could state that the total number of species A and species B must be
some value. Rule is a MATLAB expression that defines the change in
the species object quantity or a parameter object Value when the rule is
evaluated.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules see addrule.

The types of rules in SimBiology are as follows:

• initialAssignment — Lets you specify the initial value of a
parameter, species, or compartment capacity, as a function of other
model component values in the model.

• repeatedAssignment — Lets you specify a value that holds at all
times during simulation, and is a function of other model component
values in the model.

• algebraic — Lets you specify mathematical constraints on one or
more parameters, species, or compartments that must hold during a
simulation.

• rate — Lets you specify the time derivative of a parameter value,
species amount, or compartment capacity.

Constraints on Varying Species Using a Rate Rule

If the model has a species defined in concentration, being varied by a
rate rule, and it is in a compartment with varying volume, you can only
use rate or initialAssigment rules to vary the compartment volume.

Conversely, if you are varying a compartment’s volume using a
repeatedAssignment or algebraic rules, then you cannot vary a
species (defined in concentration) within that compartment, with a rate
rule.

6-105

RuleType

The reason for these constraints is that, if a species is defined in
concentration and it is in a compartment with varying volume, the time
derivative of that species is a function of the compartment’s rate of
change. For compartments varied by rate rules, the solver has that
information.

Note that if you specify the species in amounts there are no constraints.

Characteristics
Applies to Object: rule
Data type char string

Data values 'algebraic', 'assignment', 'rate'. Default
value is 'assignment'.

Access Read/write

Examples 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule that specifies the quantity of a species c. In the rule
expression, k is the rate constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from the default ('algebraic') to 'rate' and
verify it using the get command.

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object.

Active: 1
Annotation: ''

Name: ''
Notes: ''

6-106

RuleType

Parent: [1x1 SimBiology.Model]
Rule: 'c = k*(a+b)'

RuleType: 'rate'
Tag: ''

Type: 'rule'
UserData: []

See Also “Changing Model Component Values Using Rules” in the SimBiology
User’s Guide, addrule, delete, sbiorule

6-107

Rules

Purpose Array of rules in model object

Description The Rules property shows the rules in a Model object. Read-only array
of SimBiology.Rule objects.

A rule is a mathematical expression that modifies a species amount or a
parameter value. A rule defines how certain species and parameters
should interact with one another. For example, a rule could state that
the total number of species A and species B must be some value.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules, see addrule and RuleType.

Characteristics
Applies to Object: model
Data type Array of rule objects
Data values Rule object
Access Read-only

Examples 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Add a rule.

ruleobj = addrule(modelObj, '10-a+b')

MATLAB returns:

SimBiology Rule Array

Index: RuleType: Rule:
1 algebraic 10-a+b

See Also addrule, delete, sbiorule

6-108

RunInfo

Purpose Information about simulation

Description The RunInfo property contains information describing the simulation
run that yielded the data in the SimData object.

The following information is stored:

• Configset — A struct form of the configuration set used during
simulation. This would typically be the model’s active configset.

• Variant— A struct form of the variant(s) used during simulation.

• SimulationDate — The date/time of simulation.

• SimulationType — Either 'single run' or 'ensemble run',
depending on whether the data object was created using the function
sbiosimulate or the function sbioensemblerun.

Characteristics
Applies to Object: SimData
Data type struct

Data values Default values are as follows:

ConfigSet: []
SimulationDate: ''
SimulationType: ''
Variant: []

In practice, the ConfigSet,
SimulationDate, and SimulationType
fields are rarely empty, since they are
populated after simulation.

Access Read-only

See Also StopTime, StopTimeType

6-109

RuntimeOptions

Purpose Options for logged species

Description The RuntimeOptions property holds options for species that will be
logged during the simulation run. The run-time options object can be
accessed through this property.

The LogDecimation property of the configuration set object defines
how often data is logged.

Property
Summary

StatesToLog Specify species data recorded
Type Display top-level SimBiology

object type

Characteristics
Applies to Object: configset
Data type Object

Data values Run-time options
Access Read-only

Examples 1 Create a model object, and retrieve its configuration set.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the RuntimeOptions object from the configset object.

runtimeObj = get(configsetObj, 'RunTimeOptions')
Runtime Settings:

StatesToLog: all

See Also MATLAB functions get, set

6-110

SensitivityAnalysis

Purpose Enable or disable sensitivity analysis

Description The SensitivityAnalysis property lets you compute the
time-dependent sensitivities of all the species states defined by the
StatesToLog property with respect to the SpeciesInputFactors
and the ParameterInputFactors that you specify in the
SensitivityAnalysisOptions property of the configuration set object.

SensitivityAnalysis is a property of the SolverOptions object.
SolverOptions is a property of the configuration set object.
SensitivityAnalysis is available for the ode solvers ('ode45',
'ode23', 'ode113', 'ode15s', 'ode23s', 'ode23t', and 'ode23tb').

See SensitivityAnalysisOptions for more information on setting
up sensitivity analysis. See “Sensitivity Analysis” in the SimBiology
User’s Guide documentation for a description of sensitivity analysis
calculations.

Characteristics
Applies to Object: SolverOptions
Data type logical

Data values 1, 0, true, false. Default is false.
Access Read/write

Examples This example shows how to enable SensitivityAnalysis.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);
get(configsetObj.SolverOptions, 'SensitivityAnalysis')

6-111

SensitivityAnalysis

ans =

on

See Also SensitivityAnalysisOptions, SolverOptions, SolverType,
StatesToLog

6-112

SensitivityAnalysisOptions

Purpose Specify sensitivity analysis options

Description The SensitivityAnalysisOptions property is an object that holds the
sensitivity analysis options in the configuration set object. Sensitivity
analysis is only supported for deterministic (ODE) simulations.

Properties of SensitivityAnalysisOptions are summarized in
“Property Summary” on page 6-114.

When sensitivity analysis is enabled, the following command

[t,x,names] = sbiosimulate(modelObj)

returns [t,x,names], where

• t is an n-by-1 vector, where n is the number of steps taken by the
ode solver and t defines the time steps of the solver.

• x is an n-by-m matrix, where n is the number of steps taken by the
ode solver and m is:

Number of states specified in StatesToLog +

(Number of species specified in StatesToLog*Number of input factors)

A SimBiology state includes species and nonconstant parameters.

• names is the list of states logged and the list of sensitivities of the
species specified in StatesToLog with respect to the input factors.

For an example of the output, see “Examples” on page 6-114.

You can add a number of configuration set objects with different
SensitivityAnalysisOptions to the model object with the
addconfigset method. Only one configuration set object in the model
object can have the Active property set to true at any given time.

6-113

SensitivityAnalysisOptions

Property
Summary

Normalization Specify normalization type for
sensitivity analysis

ParameterInputFactors Specify parameter input factors
for sensitivity analysis

SpeciesInputFactors Specify species inputs for
sensitivity analysis

SpeciesOutputs Specify species outputs for
sensitivity analysis

Characteristics
Applies to Object: configuration set
Data type Object
Data values SensitivityAnalysisOptions properties as

summarized in “Property Summary” on page
6-114.

Access Read-only

Examples This example shows how to set SensitivityAnalysisOptions.

1 Import the radio decay model from SimBiology demos.

modelObj = sbmlimport('radiodecay');

2 Retrieve the configset object from the modelObj.

configsetObj = getconfigset(modelObj);

3 Add a parameter to the ParameterInputFactors property and
display. Use the sbioselect function to retrieve the parameter
object from the model.

set(configsetObj.SensitivityAnalysisOptions,'ParameterInputFactors', ...

sbioselect(modelObj, 'Type', 'parameter', 'Name', 'c'));

6-114

SensitivityAnalysisOptions

get (configsetObj.SensitivityAnalysisOptions, 'ParameterInputFactors')

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 c 0.5 1/second

4 Add a species to the SpeciesInputFactors property and display. Use
the sbioselect function to retrieve the species object from the model.

set(configsetObj.SensitivityAnalysisOptions,'SpeciesInputFactors', ...

sbioselect(modelObj,'Type', 'species', 'Name', 'z'));

get (configsetObj.SensitivityAnalysisOptions, 'SpeciesInputFactors');

set(configsetObj.SensitivityAnalysisOptions, ...

'SpeciesOutputs', sbioselect(modelObj, 'Type', 'species'));

5 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);
get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

1

6 Simulate and return the results to three output variables. See
“Description” on page 6-113 for more information.

[t,x,names] = sbiosimulate(modelObj);

7 Display the names.

names

names =

'x'
'z'
'd[x]/d[z]_0'

6-115

SensitivityAnalysisOptions

'd[z]/d[z]_0'
'd[x]/d[c]'
'd[z]/d[c]'

8 Display state values x.

x

The display follows the column order shown in names for the values
in x. The rows correspond to t.

See Also addconfigset, getconfigset

6-116

SolverOptions

Purpose Specify model solver options

Description The SolverOptions property is an object that holds the model solver
options in the configset object. Changing the property SolverType
changes the options specified in the SolverOptions object.

Properties of SolverOptions are summarized in “Property Summary”
on page 6-117.

Property
Summary

AbsoluteTolerance Specify largest allowable absolute
error

ErrorTolerance Specify explicit or implicit tau
error tolerance

LogDecimation Specify recorded simulation
output frequency

MaxIterations Specify nonlinear solver
maximum iterations in implicit
tau

MaxStep Specify upper bound on solver
step size

RandomState Set random number generator
RelativeTolerance Specify allowable error relative to

component
SensitivityAnalysis Enable or disable sensitivity

analysis
Type Display top-level SimBiology

object type

Characteristics
Applies to Object: configset
Data type Object

6-117

SolverOptions

Data values Solver options depending on SolverType.
Default is SolverOptions for default
SolverType (ode15s).

Access Read-only

Examples This example shows the changes in SolverOptions for various
SolverType settings.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45');
get(configsetObj, 'SolverOptions')

Solver Settings: (ode)

AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

3 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa');
get(configsetObj, 'SolverOptions')

Solver Settings: (ssa)

LogDecimation: 1
RandomState: []

4 Configure the SolverType to impltau.

6-118

SolverOptions

set(configsetObj, 'SolverType', 'impltau');
get(configsetObj, 'SolverOptions')

Solver Settings: (impltau)

ErrorTolerance: 3.000000e-002
LogDecimation: 1
AbsoluteTolerance: 1.000000e-002
RelativeTolerance: 1.000000e-002
MaxIterations: 15
RandomState: []

5 Configure the SolverType to expltau.

set(configsetObj, 'SolverType', 'expltau');
get(configsetObj, 'SolverOptions')

Solver Settings: (expltau)

ErrorTolerance: 3.000000e-002
LogDecimation: 1
RandomState: []

See Also addconfigset, getconfigset

6-119

SolverType

Purpose Select solver type for simulation

Description The SolverType property lets you specify the solver to use for a
simulation. The valid SolverType values are 'ssa', 'expltau',
'impltau', 'ode45', 'ode23', 'ode113', 'ode15s', 'ode23s', and
'ode23t'. The default solver is ode15s. For a discussion about these
solver types, see “Selecting a Solver” in the SimBiology User’s Guide
documentation.

Changing the solver type changes the options (properties) specified in
the SolverOptions property of the configset object. If you change
any SolverOptions, these changes are persistent when you switch
SolverType. For example, if you set the ErrorTolerance for the
expltau solver and then change to impltau when you switch back to
expltau, the ErrorTolerance will have the number you assigned.

Characteristics
Applies to Object: configset
Data type enum

Data values 'ssa', 'expltau', 'impltau', 'ode45',
'ode23', 'ode113', 'ode15s', 'ode23s',
'ode23t', 'ode23tb'. Default is ode15s.

Access Read/write

Examples 1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)
SolverType: ode15s
StopTime: 10.000000

SolverOptions:

6-120

SolverType

AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

RuntimeOptions:
StatesToLog: all

CompileOptions:
UnitConversion: true
DimensionalAnalysis: true

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45')
configsetObj

Configuration Settings - default (active)
SolverType: ode45
StopTime: 10.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

RuntimeOptions:
StatesToLog: all

CompileOptions:
UnitConversion: true
DimensionalAnalysis: true

See Also getconfigset, set

6-121

Species

Purpose Array of species in compartment object

Description The Species property is a property of the compartment object and
indicates all the species in a compartment object. Species is a read-only
array of SimBiology species objects.

In the model object, Species contains a flat list of all the species
that exist within all the compartments in the model. You should
always access a species through its compartment rather than the
model object. Use the format compartmentName.speciesName,
for example, nucleus.DNA. Another example of the syntax is
modelObj.Compartments(2).Species(1). The Species property in the
model object might not be available in a future version of the software.

Species are entities that take part in reactions. A species object is added
to the Species property when a reaction is added to the model object
with the method addreaction. A species object can also be added to the
Species property with the method addspecies.

If you remove a reaction with the method delete, and a species is no
longer being used by any of the remaining reactions, the species object
is not removed from the Species property. You have to use the delete
method to remove species.

There are reserved characters that cannot be used in species object
names. See Name for more information.

Characteristics
Applies to Object: compartment
Data type Array of species objects

Data values Species object. Default is [] (empty).
Access Read-only

See Also addcompartment, addreaction, addspecies, delete

6-122

SpeciesInputFactors

Purpose Specify species inputs for sensitivity analysis

Description Use the SpeciesInputFactors property to specify the species with
respect to which you want to compute the sensitivities of the species
states in your model.

SpeciesInputFactors is a property of the
SensitivityAnalysisOptions object. SenstivityAnalysisOptions
is a property of the configuration set object.

The SimBiology software calculates sensitivities with respect to the
initial amounts of the species specified in this property. When you
simulate a model with SensitivityAnalysis enabled in the active
configuration set object, sensitivity analysis returns the computed
sensitivities of the species specified in StatesToLog. For a description of
the output, see the SensitivityAnalysisOptions property description.

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type Species object or array of species objects
Data values Species object array. Default is [] (empty).
Access Read/write

Examples This example shows how to set SpeciesInputFactors for sensitivity
analysis.

1 Import the radio decay model from the SimBiology demos.

modelObj = sbmlimport('radiodecay');

2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);

3 Add a species to the SpeciesInputFactors property and display. Use
the sbioselect function to retrieve the species object from the model.

6-123

SpeciesInputFactors

set(configsetObj.SensitivityAnalysisOptions,'SpeciesInputFactors', ...

sbioselect(modelObj, 'Type', 'species', 'Name', 'z'));

get (configsetObj.SensitivityAnalysisOptions, 'SpeciesInputFactors')

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
1 unnamed z 0 molecule

See Also ParameterInputFactors, sbioselect, SensitivityAnalysis,
SensitivityAnalysisOptions

6-124

SpeciesOutputs

Purpose Specify species outputs for sensitivity analysis

Description The SpeciesOutputs property allows you to specify the species for which
you want to compute sensitivities. SpeciesOutputs is a property of the
SensitivityAnalysisOptions object. SenstivityAnalysisOptions is
a property of the configuration set object.

The SimBiology software calculates sensitivities with respect to the
values of the parameters specified in ParameterInputFactors and
the initial amounts of the species specified in SpeciesInputFactors.
When you simulate a model with SensitivityAnalysis enabled in
the active configuration set object, sensitivity analysis returns the
computed sensitivities of the species specified in SpeciesOutputs. For
a description of the output, see the SensitivityAnalysisOptions
property description.

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type Species object or array of species objects
Data values Species object array. Default is [] (empty).
Access Read/write

Examples This example shows how to set SpeciesOutputs for sensitivity analysis.

1 Import the radio decay model from the SimBiology demos.

modelObj = sbmlimport('radiodecay');

2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);

3 Add a species to the SpeciesOutputs property and display. Use the
sbioselect function to retrieve the species object from the model.

6-125

SpeciesOutputs

set(configsetObj.SensitivityAnalysisOptions,'SpeciesOutputs', ...

sbioselect(modelObj, 'Type', 'species', 'Name', 'z'));

get (configsetObj.SensitivityAnalysisOptions, 'SpeciesOutputs')

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
1 unnamed z 0 molecule

See Also ParameterInputFactors, sbioselect, SensitivityAnalysis,
SensitivityAnalysisOptions, SpeciesInputFactors

6-126

SpeciesVariableNames

Purpose Cell array of species used in reaction rate equation

Description The SpeciesVariableNames property shows the species used by the
kinetic law object to determine the ReactionRate equation in the
reaction object. Use setspecies to assign SpeciesVariableNames.
When you assign species to SpeciesVariableNames, SimBiology
software maps these species names to SpeciesVariables in the kinetic
law object.

The ReactionRate property of a reaction object shows the result
of a mapping from an abstract kinetic law. The ReactionRate
is determined by the kinetic law object Expression property by
mapping ParameterVariableNames to ParameterVariables and
SpeciesVariableNames to SpeciesVariables.

Characteristics
Applies to Object: kinetic law
Data type Cell array of strings
Data values Cell array of species names
Access Read/write

Examples Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

The reactionObj KineticLaw property is configured to
kineticlawObj.

6-127

SpeciesVariableNames

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that you should set. To set this variable:

setspecies(kineticlawObj,'S', 'a');

4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

ans =

'a'

See Also Expression, ParameterVariables, ParameterVariableNames,
ReactionRate,setparameter, SpeciesVariables

6-128

SpeciesVariables

Purpose Species in abstract kinetic law

Description This property shows species variables that are used in the Expression
property of the kinetic law object to determine the ReactionRate
equation in the reaction object. Use the MATLAB function set to assign
SpeciesVariables to an abstract kinetic law. For more information,
see abstract kinetic law.

Characteristics
Applies to Objects: abstract kinetic law,

kineticlaw
Data type Cell array of strings
Data values Defined by abstract kinetic law
Access Read/write in abstract kinetic

law. Read-only in kinetic law.

Examples Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 View the species variable for'Henri-Michaelis-Menten' kinetic law.

get (kineticlawObj, 'SpeciesVariables')

MATLAB returns:

6-129

SpeciesVariables

ans =

'S'

See Also Expression, ParameterVariables, ParameterVariableNames,
ReactionRate, set, setparameter, SpeciesVariableNames

6-130

StatesToLog

Purpose Specify species data recorded

Description The StatesToLog property indicates the species data to log during a
simulation. This is the data returned in x during execution of (t,x) =
sbiosimulate(modelObj). By default all species are logged.

Characteristics
Applies to Object: RunTimeOptions
Data type Object or vector of objects
Data values Species objects to log. Default is All.
Access Read/write

Examples This example shows how to assign species to StatesToLog.

1 Create a model object by importing the file oscillator.xml.

modelObj = sbmlimport('oscillator');

2 Retrieve the first and second species in modelObj.

speciesObj1 = modelObj.Species(1);
speciesObj2 = modelObj.Species(2);

3 Retrieve the configsetObj of modelObj.

configsetObj = getconfigset(modelObj);

4 Set the StatesToLog to record three species: two using the retrieved
species objects and one using indexing and view the species in
StatesToLog.

set (configsetObj.RuntimeOptions, 'StatesToLog', ...

[speciesObj1, speciesObj2, modelObj.Species(3)]);

get(configsetObj.RuntimeOptions, 'StatesToLog')

6-131

Stoichiometry

Purpose Species coefficients in reaction

Description The Stoichiometry property specifies the species coefficients in a
reaction. Enter an array of doubles indicating the stoichiometry of
reactants (negative value) and products (positive value). Example: [-1
-1 2].

The double specified cannot be 0. The reactants of the reaction are
defined with a negative number. The products of the reaction are
defined with a positive number. For example, the reaction 3 H + A-> 2
C + F has the Stoichiometry value of [-3 -1 2 1].

When this property is configured, the Reaction property updates
accordingly. In the above example, if the Stoichiometry value was set
to [-2 -1 2 3], the reaction is updated to 2H + A -> 2C + 3F.

The length of the Stoichiometry array is the sum of the Reactants
array and the Products array. To remove a product or reactant from
a reaction, use the rmproduct or rmreactant function. Add a product
or reactant and set stoichiometry with methods addproduct and
addreactant

ODE solvers support double stoichiometry values such as 0.5.
Stochastic solvers and dimensional analysis currently support only
integers in Stoichiometry, therefore you must balance the reaction
equation and specify integer values for these two cases.

A -> null has a stoichiometry value of [-1]. null -> B has a
stoichiometry value of [1].

Characteristics
Applies to Object: reaction
Data type Double array
Data values 1-by-n double, where n is length (products) +

length (reactants). Default [] (empty).
Access Read/write

6-132

Stoichiometry

Examples 1 Create a reaction object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, '2 a + 3 b -> d + 2 c');

2 Verify the Reaction and Stoichiometry properties for reactionObj.

get(reactionObj,'Stoichiometry')

MATLAB returns:

ans =

-2 -3 1 2

3 Set stoichiometry to [-1 -2 2 2].

set (reactionObj, 'Stoichiometry', [-1 -2 2 2]);
get (reactionObj, 'Stoichiometry')

MATLAB returns:

ans =

-1 -2 2 2

4 Note with get that the Reaction property updates automatically.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + 2 b -> 2 d + 2 c

See Also addproduct, addreactant, addreaction, Reaction, rmproduct,
rmreactant

6-133

StopTime

Purpose Set stop time for simulation

Description The StopTime property sets the stop time for a simulation. The type of
StopTime is specified in the property StopTimeType.

Characteristics
Applies to Object: configset
Data type double

Data values Enter a positive number. Default is 10.
Access Read/write

Examples 1 Retrieve the configset object from modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Configure the StopTime to 20.

set(configsetObj, 'StopTime', 20)
get(configsetObj, 'StopTime')

ans =

20

See Also StopTimeType, TimeUnits

6-134

StopTimeType

Purpose Specify type of stop time for simulation

Description The StopTimeType property sets the type of stop time for a simulation.
The stop time is specified in the StopTime property of the configset
object. Valid types are approxWallTime, numberOfLogs, and
simulationTime. The default is simulationTime.

• simulationTime — Specify the stop time for the simulation. The
solver determines and sets the time steps and the simulation stops
when it reaches the specified StopTime.

• approxWallTime — Specify the approximate stop time according
to the clock. For example,10s of approxWallTime is approximately
10s of real time.

• numberOfLogs — Specify the total number of simulation steps to be
recorded during the simulation. For example if you want to log three
simulation steps, the numberOfLogs is 3. The simulation will stop
after the specified numberOfLogs.

You can change the StopTimeType setting with the set function.

Characteristics
Applies to Object: configset
Data type enum

Data values approxWallTime, numberOfLogs, and
simulationTime

Access Read/write

Examples 1 Retrieve the configset object from modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Configure the StopTimeType to approxWallTime.

6-135

StopTimeType

set(configsetObj, 'StopTimeType', 'approxWallTime');
get(configsetObj, 'StopTimeType')

ans =

approxWallTime

See Also set, StatesToLog, StopTime, TimeUnits

6-136

Tag

Purpose Specify label for SimBiology object

Description The Tag property specifies a label associated with a SimBiology object.
Use this property to group objects and then use sbioselect to retrieve.
For example, use the Tag property in reaction objects to group synthesis
or degradation reactions. You can then retrieve all synthesis reactions
using sbioselect. Similarly, for species objects you can enter and store
classification information, for example, membrane protein, transcription
factor, enzyme classifications, or whether a species is an independent
variable. You can also enter the full form of the name of the species.
This is useful when viewing the model in the Block Diagram Explorer.
For example, the species object Name could be G6P for convenience, but
in the Tag you should enter the full name, Glucose-6 phosphate. The
graphical representation of the model in the Block Diagram Explorer
(available in sbiodesktop) can be sorted by the Tag field, and this
feature provides a method to view the full name.

Characteristics
Applies to Objects: abstract kinetic law, kinetic law, model,

parameter, reaction, rule, and species
Data type char string

Data values Any char string

Access Read/write

Examples 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add a reaction object and set the Tag property to 'Synthesis
Reaction'.

reactionObj = addreaction (modelObj, 'a + b -> c + d');
set (reactionObj, 'Tag', 'Synthesis Reaction')

3 Verify the Tag assignment.

6-137

Tag

get (reactionObj, 'Tag');

MATLAB returns:

ans =

'Synthesis Reaction'

See Also addkineticlaw, addparameter, addreaction, addrule, addspecies,
sbioabstractkineticlaw, sbiomodel, sbioroot

6-138

Trigger

Purpose Event trigger

Description A Trigger is a condition that must become true for an event to be
executed. You can a combination of relational and logical operators to
build a trigger expression. Trigger can be a string, an expression, or a
function handle that when evaluated returns a value of true or false.
Triggers can access species, parameters, and compartments.

A trigger can contain the keyword ’time’, to define an event that occurs
at a specific time during the simulation.

For more information about how the SimBiology software handles
events, see “How Events Are Evaluated” in the SimBiology User’s Guide
documentation. For examples of event functions, see “Specifying Event
Triggers” in the SimBiology User’s Guide documentation.

Characteristics
Applies to Object: event
SimBiology type String, function handle
SimBiology values Specify MATLAB expression as string. Default

is '' (None).
Access Read/write

Examples 1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator');
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the Trigger property of the event object.

set(eventObj, 'Trigger', '(time >=5) && (speciesA<1000)');

3 Get the Trigger property.

get(eventObj, 'Trigger')

6-139

Trigger

See Also Event object, EventFcns

6-140

Time

Purpose Show simulation time steps

Description The Time property shows the time points in a simulation.

Characteristics
Applies to Object: SimData
Data type double

Data values Vector of doubles
Access Read-only

See Also StopTime, StopTimeType

6-141

TimeUnits

Purpose Show stop time units for simulation

Description The TimeUnits property shows units for the stop time for a simulation.
The type of StopTime is specified in the property StopTimeType. Unit is
in seconds.

Characteristics
Applies to Object: configset
Data type string

Data values Default value is second.
Access Read-only

See Also StopTime, StopTimeType

6-142

Type

Purpose Display top-level SimBiology object type

Description The Type property indicates a SimBiology object type. When you create
a SimBiology object, the value of Type is automatically defined.

For example, when a Species object is created, the value of the Type
property is automatically defined as 'species'.

Characteristics
Applies to Objects: abstract kinetic law, configuration

set, CompileOptions, kinetic law, model,
parameter, reaction, root, rule, species,
RuntimeOptions, and SolverOptions

Data type char string

Data values abstract_kinetic_law, configset,
compileoptions, kineticlaw, parameter,
reaction, root, rule, runtimeoptions,
sbiomodel, species, and solveroptions

Access Read-only

See Also sbiomodel, sbioparameter, sbioreaction, sbioroot, sbiorule,
sbiospecies

6-143

UnitConversion

Purpose Perform unit conversion

Description The UnitConversion property specifies whether to perform unit
conversion for the model before simulation. It is a property of the
CompileOptions object. CompileOptions holds the model’s compile
time options and is the object property of the configset object.

When UnitConversion is set to true, the SimBiology software converts
the matching physical quantities to one consistent unit system in order
to resolve them. This conversion is in preparation for correct simulation,
but species amounts are returned in the user-specified units.

For example, consider a reaction a + b > c. Using mass action
kinetics the reaction rate is defined as a*b*k where k is the rate
constant of the reaction. If you specify that initial amounts of a and b
are 0.01M and 0.005M respectively, then units of k are 1/(M*second).
If you specify k with another equivalent unit definition, for example,
1/((molecules/liter)*second), UnitConversion occurs after
DimensionalAnalysis.

Unit conversion requires dimensional analysis. If DimensionalAnalysis
is off, and you turn UnitConversion on, then DimensionalAnalysis
is turned on automatically. If UnitConversion is on and you turn
off DimensionalAnalysis, then UnitConversion is turned off
automatically.

If UnitConversion fails, then you see an error when you simulate
(sbiosimulate).

If UnitConversion is set to false, the simulation uses the given object
values.

Characteristics
Applies to Object: CompileOptions (in configset

object)
Data type boolean

6-144

UnitConversion

Data values true or false. Default value is false.
Access Read/write

Examples This example shows how to retrieve and set unitconversion from the
default true to false in the default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator

Model Components:
Models: 0
Parameters: 0
Reactions: 42
Rules: 0
Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)
SolverType: ode15s
StopTime: 10.000000

SolverOptions:
AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

RuntimeOptions:
StatesToLog: all

CompileOptions:

6-145

UnitConversion

UnitConversion: false
DimensionalAnalysis: true

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')

Compile Settings:

UnitConversion: false
DimensionalAnalysis: true

4 Assign a value of false to UnitConversion.

set(optionsObj,'UnitConversion', true)

See Also get, getconfigset, sbiosimulate, set

6-146

UserData

Purpose Specify data to associate with object

Description Property to specify data that you want to associate with a SimBiology
object. The object does not use this data directly, but you can access it
using the function get or dot notation.

Characteristics
Applies to Objects: abstract kinetic law, configuration set,

compartment, data, event, kinetic law, model,
parameter, reaction, rule, species, or unit

Data type Any
Data values Any. Default is empty
Access Read/write

See Also sbioabstractkineticlaw, sbiomodel, sbioparameter, sbioreaction,
sbioroot, sbiorule, sbiospecies, sbiounit, sbiounitprefix

6-147

UserDefinedKineticLaws

Purpose Contain user-defined kinetic laws

Note UserDefinedKineticLaws has been removed and produces an
error. Use UserDefinedLibrary instead.

Description The UserDefinedKineticLaws property is a SimBiology root object
property showing all user-defined abstract kinetic laws. Use the
command sbiowhos -userdefined -kineticlaw to see the list of
user-defined kinetic laws. You can use user-defined kinetic laws when
you use the command addkineticlaw to create a kinetic law object for
a reaction object. Refer to the kinetic law by name when you create
the kinetic law object, for example:

kineticlawObj = addkineticlaw(reactionObj, 'my_kinetic_law');

You can add, modify, or delete UserDefinedKineticLaws. Create an
abstract kinetic law with the command sbioabstractkineticlaw
and add it to the user-defined kinetic law library with the
command sbioaddtolibrary. sbioaddtolibrary also updates the
UserDefinedKineticLaws property of the root object.

See “Abstract Kinetic Law” on page 6-49 for a definition and more
information.

Characteristics
Applies to Object: root
Data type char string

Data values Valid kinetic laws
Access Read/write

See Also AbstractKineticLaw object, sbioaddtolibrary,
UserDefinedLibrary

6-148

UserDefinedLibrary

Purpose Library of user-defined components

Description UserDefinedLibrary is a SimBiology root object property containing
all user-defined components of unit, unit prefixes, and abstract kinetic
laws that you define. You can add, modify, or delete components in the
user-defined library. The UserDefinedLibrary property is an object
that contains the following properties:

• Units — Contains any user-defined units. You can specify units
for compartment capacity, species amounts and parameter values,
to do dimensional analysis and unit conversion during simulation.
You can display the user-defined units either by using the command
sbiowhos -userdefined -unit, or by accessing the root object.

• UnitPrefixes — Contains any user-defined unit prefixes. You can
specify unit prefixes in combination with a valid unit for compartment
capacity, species amounts and parameter values, to do dimensional
analysis and unit conversion during simulation. You can display the
user-defined unit prefixes either by using the command sbiowhos
-userdefined -unitprefix, or by accessing the root object.

• KineticLaws— Contains any user-defined unit abstract kinetic laws.
Use the command sbiowhos -userdefined -kineticlaw to see the
list of user-defined kinetic laws. You can use user-defined kinetic
laws when you use the command addkineticlaw to create a kinetic
law object for a reaction object. Refer to the kinetic law by name
when you create the kinetic law object, for example, kineticlawObj
= addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');.

See “Abstract Kinetic Law” on page 6-49 for a definition and more
information.

Characteristics
Applies to Object: root
Data type object

6-149

UserDefinedLibrary

Data values Unit, unit prefix, and abstract kinetic law
objects

Access Read-only

Characteristics for UserDefinedLibrary properties:

• Units

Applies to UserDefinedLibrary property

Data type Unit objects
Data values Units
Access Read/write

• UnitPrefixes

Applies to BuiltInLibrary property
Data type Unit prefix objects
Data values Unit prefixes
Access Read/write

• KineticLaws

Applies to BuiltInLibrary property
Data type Abstract kinetic law object
Data values Kinetic laws
Access Read/write

Examples Example 1

This example uses the command sbiowhos to show the current list of
user-defined components.

sbiowhos -userdefined -kineticlaw

6-150

UserDefinedLibrary

sbiowhos -userdefined -unit
sbiowhos -userdefined -unitprefix

Example 2

This example shows the current list of user-defined components by
accessing the root object.

rootObj = sbioroot;
get(rootObj.UserDefinedLibrary, 'KineticLaws')
get(rootObj.UserDefinedLibrary, 'Units')
get(rootObj.UserDefinedLibrary, 'UnitPrefixes')

See Also BuiltInLibrary, sbioaddtolibrary, sbioremovefromlibrary
sbioroot, sbiounit, sbiounitprefix

6-151

UserDefinedUnitPrefixes

Purpose Contain user-defined unit prefixes

Note UserDefinedUnitPrefixes has been removed and produces an
error. Use UserDefinedLibrary instead.

Description The UserDefinedUnitPrefixes property is a SimBiology root object
property showing all user-defined unit prefixes. You can specify
units with prefixes for species amounts and parameter values to do
dimensional analysis and unit conversion during simulation. The valid
units and unit prefixes are either built in or user defined. Use the
command sbiowhos -userdefined -unit to see the list of user-defined
units.

You can add, modify, or delete UserDefinedUnitPrefixes. You can
define a unit prefix with the command sbioregisterunitprefix,
which enables you to create the unit and add it to the user-defined
unit prefixes library, and also add it to the UserDefinedUnitPrefixes
property of the root object.

Characteristics
Applies to Object: root
Data type char string

Data values Valid unit prefixes
Access Read/write

See Also sbioaddtolibrary, UserDefinedLibrary, UnitPrefix object

6-152

UserDefinedUnits

Purpose Contain user-defined units

Note UserDefinedUnits has been removed and produces an error.
Use UserDefinedLibrary instead.

Description The UserDefinedUnits property is a SimBiology root object property
showing all user-defined units. You can specify units for species
amounts and parameter values to do dimensional analysis and unit
conversion during simulation. The valid units are either built in or user
defined. Use the command sbiowhos -userdefined -unit to see the
list of user-defined units.

You can add, modify, or delete UserDefinedUnits. You can define a
unit with the command sbioregisterunit, which enables you to create
the unit and add it to the user-defined units library, and also add it to
the UserDefinedUnits property of the root object.

Characteristics
Applies to Object: root
SimBiology type char string

SimBiology values Valid units
SimBiology Read/write

See Also sbioaddtolibrary, UserDefinedLibrary, Unit object

6-153

Value

Purpose Assign value to parameter object

Description The Value property is the value of the parameter object. The parameter
object defines an assignment that can be used by the model object
and/or the kinetic law object. Create parameters and assign Value
using the method addparameter.

Characteristics
Applies to Object: parameter
Data type double

Data values Any double. Default value is 1.0.
Access Read/write

Examples Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');

2 Add a parameter to the model object (modelObj) with Value 0.5.

parameterObj1 = addparameter (modelObj, 'K1', 0.5)

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K1 0.5

See Also addparameter, sbioparameter

6-154

ValueUnits

Purpose Parameter value units

Description The ValueUnits property indicates the unit definition of the parameter
object Value property. ValueUnits can be one of the built-in units.
To get a list of the built-in units, use the sbioshowunits function. If
ValueUnits changes from one unit definition to another, the Value does
not automatically convert to the new units. The sbioconvertunits
function does this conversion.

You can add a parameter object to a model object or a kinetic law object.

Characteristics
Applies to Object: parameter
Data type char string

Data values Unit from units library. Default is '' (empty).
Access Read/write

Examples Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

2 Add a parameter with Value 0.5, and assign it to the model object
(modelObj).

parameterObj1 = addparameter(modelObj, 'K1', 0.5, 'ValueUnits', '1/second')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 K1 0.5 1/second

See Also addparameter, sbioconvertunits, sbioparameter, sbioshowunits

6-155

ValueUnits

6-156

Index

A
AbsoluteTolerance property

reference 6-2
abstract kinetic law object

reference 4-2
Active property

reference 6-4
addcompartment method

reference 4-4
addconfigset method

reference 4-9
addcontent method

reference 4-12
addevent method

reference 4-14
addkineticlaw method

reference 4-18
addparameter method

reference 4-29
addproduct method

reference 4-34
addreactant method

reference 4-37
addreaction method

reference 4-40
addrule method

reference 4-46
addspecies method

reference 4-50
addvariant method

reference 4-55
Annotation property

reference 6-6

B
BoundaryCondition property

reference 6-7
BuiltInLibrary property

reference 6-11

C
Capacity property

reference 6-16
CapacityUnits property

reference 6-17
commit method

reference 4-60
compartment object

reference 4-62
Compartments property

reference 6-19
CompileOptions property

reference 6-21
Composition property 6-23
configset object

reference 4-57
Conserved Moieties

function for 2-9
ConstantAmount property

reference 6-25
ConstantCapacity property

reference 6-27
ConstantValue property

reference 6-29
Content property

reference 6-31
copyobj method

reference 4-66

D
Data property

reference 6-33
DataCount property

reference 6-34
DataInfo property

reference 6-35
DataNames property

reference 6-37

Index-1

Index

DefaultSpeciesDimension property
reference 6-38

delete method
reference 4-68

DimensionalAnalysis property
reference 6-40

display method
reference 4-70

E
Ensemble Runs

function for 2-19 2-21 2-25
ErrorTolerance property

reference 6-43
event object

reference 4-71
Exponent property

reference 6-48
Expression property

reference 6-49

F
functions

sbioabstractkineticlaw 2-2
sbioaddtolibrary 2-6
sbioconsmoiety 2-9
sbioconvertunits 2-13
sbiocopylibrary 2-15
sbiodesktop 2-17
sbioensembleplot 2-19
sbioensemblerun 2-21
sbioensemblestats 2-25
sbiogetmodel 2-31
sbiogetsensmatrix 2-34
sbiohelp 2-36
sbiolasterror 2-38
sbiolastwarning 2-42
sbioloadproject 2-43
sbiomodel 2-44
sbioparamestim 2-48
sbioplot 2-58
sbioremovefromlibrary 2-68
sbioreset 2-70
sbioroot 2-72
sbiosaveproject 2-77
sbioselect 2-79
sbioshowunitprefixes 2-88
sbioshowunits 2-90
sbiosimulate 2-92
sbiosubplot 2-101
sbiounit 2-103
sbiounitcalculator 2-107
sbiounitprefix 2-108
sbioupdate 2-113
sbiovariant 2-114
sbiowhos 2-117
sbmlexport 2-119
sbmlimport 2-121
setactiveconfigset 4-144
setparameter 4-146
setspecies 4-148

Index-2

Index

G
get method

reference 4-73
getadjacencymatrix method

reference 4-75
getconfigset method

reference 4-77
getdata method

reference 4-79
getparameters method

reference 4-83
getsensmatrix method

reference 4-85
getspecies method

reference 4-89
getstoichmatrix method

reference 4-91
getvariant method

reference 4-93

I
InitialAmount property

reference 6-54

InitialAmountUnits property
reference 6-55

K
kinetic law object

reference 4-95
KineticLaw property

reference 6-57
KineticLawName property

reference 6-59

L
LogDecimation property

reference 6-61

M
MaxIterations property

reference 6-63
MaxStep property

reference 6-65

Index-3

Index

methods
addcompartment 4-4
addconfigset 4-9
addcontent 4-12
addevent 4-14
addkineticlaw 4-18
addparameter 4-29
addproduct 4-34
addreactant 4-37
addreaction 4-40
addrule 4-46
addspecies 4-50
addvariant 4-55
commit 4-60
copyobj 4-66
delete 4-68
get 4-73
getadjacencymatrix 4-75
getconfigset 4-77
getdata 4-79
getparameters 4-83
getsensmatrix 4-85
getspecies 4-89
getstoichmatrix 4-91
getvariant 4-93
removeconfigset 4-111
removevariant 4-113
rename 4-115
reorder 4-117
resample 4-119
reset 4-122
rmcontent 4-124
rmproduct 4-127
rmreactant 4-129
select 4-135
selectbyname 4-139
set 4-142
verify 4-161

Methods
display 4-70

model object
reference 4-103 4-152 4-158

ModelName property
reference 6-66

Models property
reference 6-67

Moiety Conservation
function for 2-9

Multiplier property
reference 6-68

N
Name property

reference 6-69
Normalization property

reference 6-72
Notes property

reference 6-73

O
object

abstract kinetic law 4-2
compartment 4-62
configset 4-57
event 4-71
kinetic law 4-95
model 4-103 4-152 4-158
parameter 4-106
reaction 4-108
root 4-131
rule 4-133
SimData 4-150
unit 4-154 4-156

Offset property
reference 6-74

Owner property
reference 6-75

Index-4

Index

P
Parameter Estimation

function for 2-48
parameter object

reference 4-106
ParameterInputFactors property

reference 6-77
Parameters property

reference 6-79

ParameterVariableNames property
reference 6-81

ParameterVariables property
reference 6-83

Parent property
reference 6-85

Products property
reference 6-87

Index-5

Index

properties
AbsoluteTolerance 6-2
Active 6-4
Annotation 6-6
BoundaryCondition 6-7
BuiltInLibrary 6-11
Capacity 6-16
CapacityUnits 6-17
Compartments 6-19
CompileOptions 6-21
Composition 6-23
ConstantAmount 6-25
ConstantCapacity 6-27
ConstantValue 6-29
Content 6-31
Data 6-33
DataCount 6-34
DataInfo 6-35
DataNames 6-37
DefaultSpeciesDimension 6-38
DimensionalAnalysis 6-40
ErrorTolerance 6-43
Exponent 6-48
Expression 6-49
InitialAmount 6-54
InitialAmountUnits 6-55
KineticLaw 6-57
KineticLawName 6-59
LogDecimation 6-61
MaxIterations 6-63
MaxStep 6-65
ModelName 6-66
Models 6-67
Multiplier 6-68
Name 6-69
Normalization 6-72
Notes 6-73
Offset 6-74
Owner 6-75
ParameterInputFactors 6-77
Parameters 6-79
ParameterVariableNames 6-81
ParameterVariables 6-83
Parent 6-85
Products 6-87
RandomState 6-89
Reaction 6 93

Properties
Reactants 6-91

R
RandomState property

reference 6-89
Reactants property

reference 6-91
reaction object

reference 4-108
Reaction property

reference 6-93
ReactionRate property

reference 6-94
Reactions property

reference 6-97
RelativeTolerance property

reference 6-98
removeconfigset method

reference 4-111
removevariant method

reference 4-113
rename method

reference 4-115
reorder method

reference 4-117
resample method

reference 4-119
reset method

reference 4-122
Reversible property

reference 6-100
rmcontent method

reference 4-124
rmproduct method

reference 4-127
rmreactant method

reference 4-129
root object

reference 4-131
rule object

reference 4-133
Rule property

reference 6-103
Rules property

reference 6-108

Index-6

Index

sbiolasterror function
reference 2-38

sbiolastwarning function
reference 2-42

sbioloadproject function
reference 2-43

sbiomodel function
reference 2-44

sbioparamestim function
reference 2-48

sbioplot function
reference 2-58

sbioremovefromlibrary function
reference 2-68

sbioreset function
reference 2-70

sbioroot function
reference 2-72

sbiosaveproject function
reference 2-77

sbioselect function
reference 2-79

sbioshowunitprefixes function
reference 2-88

sbioshowunits function
reference 2-90

sbiosimulate function
reference 2-92

sbiosubplot function
reference 2-101

sbiounit function
reference 2-103

sbiounitcalculator function
reference 2-107

sbiounitprefix function
reference 2-108

sbioupdate function
reference 2-113

sbiovariant function
reference 2-114

sbiowhos function
reference 2-117

sbmlexport function
reference 2-119

sbmlimport function
reference 2-121

select method
reference 4-135

selectbyname method
reference 4-139

Sensitivity Analysis
properties for 6-72 6-77 6-111 6-113 6-123

6-125
SensitivityAnalysis property

reference 6-111
SensitivityAnalysisOptions property

reference 6-113
set method

reference 4-142
setactiveconfigset function

reference 4-144
setparameter function

reference 4-146
setspecies function

reference 4-148
SimData object

reference 4-150
SolverOptions property

reference 6-117
SolverType property

reference 6-120
species object

method summary 2-98
property summary 2-98

Species property
reference 6-122

SpeciesInputFactors property
reference 6-123

SpeciesOutputs property
reference 6-125

Index-7

Index

SpeciesVariableNames property
reference 6-127

SpeciesVariables property
reference 6-129

StatesToLog property
reference 6-131

Stoichiometry property
reference 6-132

StopTime property
reference 6-134

StopTimeType property
reference 6-135

T
Tag property

reference 6-137
Time property

reference 6-141
TimeUnits property

reference 6-142
Type property

reference 6-143

U
unit object

reference 4-154 4-156
UnitConversion property

reference 6-144
UserData property

reference 6-147
UserDefinedLibrary property

reference 6-149

V
Value property

reference 6-154
ValueUnits property

reference 6-155
verify method

reference 4-161

Index-8

	toc
	Function Reference
	Modeling, Simulation, and Analysis Tools
	Project Opening and Saving
	SBML Model Reading and Writing
	Object Construction
	Units and Unit Prefixes

	Functions — Alphabetical List
	Method Reference
	Objects
	Abstract Kinetic Laws
	Compartments
	Configuration Sets
	Events
	Kinetic Laws
	Models
	Parameters
	Reactions
	Root
	Rules
	SimData
	Species
	Units and Unit Prefixes
	Variants
	Using Object Methods
	Constructing (Creating) Objects
	Using Object Methods
	Help for Objects, Methods, and Properties

	Methods — Alphabetical List
	Property Reference
	Abstract Kinetic Law
	Compartments
	Configuration Sets
	Events
	Kinetic Laws
	Models
	Parameters
	Reactions
	Root
	Rules
	SimData
	Species
	Unit
	Unit Prefix
	Variant
	Using Object Properties
	Entering Property Values
	Retrieving Property Values
	Help for Objects, Methods, and Properties

	Properties — Alphabetical List

